Electrochemical Performances of Tin Oxide-Mesoporous Carbon Composites for Lithium Ion Battery Application
Main Article Content
Abstract
A composite of tin oxide (SnO2) and mesoporous carbon (namely HCMK3) was synthesized and investigated as anode active material for rechargeable lithium ion batteries. Nanostructured composite was prepared by incipient wetness impregnation technique in combination with a chemical reduction method. The resultant composite was 800 nm-nanorods, which were composed of discrete SnO2 nanocrystals with a size of about 3 nm filling both inside and outside the mesopores of HCMK3 carbon. The obtained electrochemical results demonstrated that owing to its novel architecture, the composite electrode showed outstanding reversible capacity, excellent rate capability, and superior long-term cycling performance. Even at a high charge-discharge rate of 1C, a high reversible capacity of 398.6 mAh g-1 was achieved after 500 cycles.
Keywords
HCMK3, mesoporous carbon, composites, lithium ion batteries
Article Details
References
[1] C. Wang, G. Du, K. Ståhl, H. Huang, Y. Zhong, J.Z. Jiang; Ultrathin SnO2 Nanosheets: Oriented Attachment Mechanism, Nonstoichiometric Defects, and Enhanced Lithium-Ion Battery Performances; J. Phys. Chem. C, 116 (2012) 4000-4011.
[2] L. Pan, K.-X. Wang, X.-D. Zhu, X.-M. Xie, Y.-T. Liu; Hierarchical assembly of SnO2 nanowires on MnO2 nanosheets: a novel 1/2D hybrid architecture for high-capacity, reversible lithium storage; J. Mater. Chem. A, 3 (2015) 6477-6483.
[3] Z. Wang, D. Luan, F.Y.C. Boey, X.W. Lou, Fast Formation of SnO2 Nanoboxes with Enhanced Lithium Storage Capability; J. Am. Chem. Soc, 133 (2011) 4738-4741.
[4] L. Li, H. Zhang, Z. Li, W. Zhong, H. Liao, Z. Li; Rapid preparation of SnO2/C nanospheres by using organotin as building blocks and their application in lithium-ion batteries, RSC Adv., 7 (2017) 34442-34447.
[5] C. Yong, L. Qian, W. Chunli, S. Lianshan, Y. Zheng, W. Limin; Large-Scale Fabrication of Core–Shell Structured C/SnO2 Hollow Spheres as Anode Materials with Improved Lithium Storage Performance, Small, 13 (2017) 1701993.
[6] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia; Review on recent progress of nanostructured anode materials for Li-ion batteries; J. Power Sources, 257 (2014) 421-443.
[7] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science, 279 (1998) 548.
[8] X. Ji, K.T. Lee, L.F. Nazar; A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater., 8 (2009) 500.
[9] P.A. Bazula, A.-H. Lu, J.-J. Nitz, F. Schüth; Surface and pore structure modification of ordered mesoporous carbons via a chemical oxidation approach; Microporous Mesoporous Mater., 108 (2008) 266-275.
[10] D. Saikia, T.-H. Wang, C.-J. Chou, J. Fang, L.-D. Tsai, H.-M. Kao; A comparative study of ordered mesoporous carbons with different pore structures as anode materials for lithium-ion batteries; RSC Adv., 5 (2015) 42922-42930.
[11] H. Qiao, J. Li, J. Fu, D. Kumar, Q. Wei, Y. Cai, F. Huang; Sonochemical Synthesis of Ordered SnO2/CMK-3 Nanocomposites and Their Lithium Storage Properties; ACS Appl. Mater. Interfaces, 3 (2011) 3704-3708.
[12] L. Liu, M. An, P. Yang, J. Zhang; Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries; Sci. Rep., 5 (2015) 9055.
[13] I.A. Courtney, J.S. Tse, O. Mao, J. Hafner, J.R. Dahn; Ab initio calculation of the lithium-tin voltage profile; Phys. Rev. B, 58 (1998) 15583-15588.
[14] C.J. Wen, R.A. Huggins; Thermodynamic Study of the Lithium-Tin System; J. Electrochem. Soc., 128 (1981) 1181-1187.
[15] J. Yang, L. Xi, J. Tang, F. Chen, L. Wu, X. Zhou; There-dimensional porous carbon network encapsulated SnO2 quantum dots as anode materials for high-rate lithium ion batteries; Electrochim. Acta, 217 (2016) 274-282.
[16] Y. Dong, Z. Zhao, Z. Wang, Y. Liu, X. Wang, J. Qiu; Dually Fixed SnO2 Nanoparticles on Graphene Nanosheets by Polyaniline Coating for Superior Lithium Storage; ACS Appl. Mater. Interfaces, 7 (2015) 2444-2451.
[17] Y. Yang, X. Zhao, H.-E. Wang, M. Li, C. Hao, M. Ji, S. Ren, G. Cao; Phosphorized SnO2/graphene heterostructures for highly reversible lithium-ion storage with enhanced pseudocapacitance; J. Mater. Chem. A, 6 (2018) 3479-3487.
[18] C. Ma, W. Zhang, Y.-S. He, Q. Gong, H. Che, Z.-F. Ma; Carbon coated SnO2 nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries; Nanoscale, 8 (2016) 4121-4126
[2] L. Pan, K.-X. Wang, X.-D. Zhu, X.-M. Xie, Y.-T. Liu; Hierarchical assembly of SnO2 nanowires on MnO2 nanosheets: a novel 1/2D hybrid architecture for high-capacity, reversible lithium storage; J. Mater. Chem. A, 3 (2015) 6477-6483.
[3] Z. Wang, D. Luan, F.Y.C. Boey, X.W. Lou, Fast Formation of SnO2 Nanoboxes with Enhanced Lithium Storage Capability; J. Am. Chem. Soc, 133 (2011) 4738-4741.
[4] L. Li, H. Zhang, Z. Li, W. Zhong, H. Liao, Z. Li; Rapid preparation of SnO2/C nanospheres by using organotin as building blocks and their application in lithium-ion batteries, RSC Adv., 7 (2017) 34442-34447.
[5] C. Yong, L. Qian, W. Chunli, S. Lianshan, Y. Zheng, W. Limin; Large-Scale Fabrication of Core–Shell Structured C/SnO2 Hollow Spheres as Anode Materials with Improved Lithium Storage Performance, Small, 13 (2017) 1701993.
[6] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia; Review on recent progress of nanostructured anode materials for Li-ion batteries; J. Power Sources, 257 (2014) 421-443.
[7] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science, 279 (1998) 548.
[8] X. Ji, K.T. Lee, L.F. Nazar; A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater., 8 (2009) 500.
[9] P.A. Bazula, A.-H. Lu, J.-J. Nitz, F. Schüth; Surface and pore structure modification of ordered mesoporous carbons via a chemical oxidation approach; Microporous Mesoporous Mater., 108 (2008) 266-275.
[10] D. Saikia, T.-H. Wang, C.-J. Chou, J. Fang, L.-D. Tsai, H.-M. Kao; A comparative study of ordered mesoporous carbons with different pore structures as anode materials for lithium-ion batteries; RSC Adv., 5 (2015) 42922-42930.
[11] H. Qiao, J. Li, J. Fu, D. Kumar, Q. Wei, Y. Cai, F. Huang; Sonochemical Synthesis of Ordered SnO2/CMK-3 Nanocomposites and Their Lithium Storage Properties; ACS Appl. Mater. Interfaces, 3 (2011) 3704-3708.
[12] L. Liu, M. An, P. Yang, J. Zhang; Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries; Sci. Rep., 5 (2015) 9055.
[13] I.A. Courtney, J.S. Tse, O. Mao, J. Hafner, J.R. Dahn; Ab initio calculation of the lithium-tin voltage profile; Phys. Rev. B, 58 (1998) 15583-15588.
[14] C.J. Wen, R.A. Huggins; Thermodynamic Study of the Lithium-Tin System; J. Electrochem. Soc., 128 (1981) 1181-1187.
[15] J. Yang, L. Xi, J. Tang, F. Chen, L. Wu, X. Zhou; There-dimensional porous carbon network encapsulated SnO2 quantum dots as anode materials for high-rate lithium ion batteries; Electrochim. Acta, 217 (2016) 274-282.
[16] Y. Dong, Z. Zhao, Z. Wang, Y. Liu, X. Wang, J. Qiu; Dually Fixed SnO2 Nanoparticles on Graphene Nanosheets by Polyaniline Coating for Superior Lithium Storage; ACS Appl. Mater. Interfaces, 7 (2015) 2444-2451.
[17] Y. Yang, X. Zhao, H.-E. Wang, M. Li, C. Hao, M. Ji, S. Ren, G. Cao; Phosphorized SnO2/graphene heterostructures for highly reversible lithium-ion storage with enhanced pseudocapacitance; J. Mater. Chem. A, 6 (2018) 3479-3487.
[18] C. Ma, W. Zhang, Y.-S. He, Q. Gong, H. Che, Z.-F. Ma; Carbon coated SnO2 nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries; Nanoscale, 8 (2016) 4121-4126