Theoretical Study on the Mechanism of the CH₃OH + ·XH₃ (X = C, Si) Reactions

Trong Nghia Nguyen1, , Ngoc Tue Nguyen1
1 Trường Đại học Bách khoa Hà Nội, Số 1, Đại Cồ Việt, Hai Bà Trưng, Hà Nội, Việt Nam

Main Article Content

Abstract

The mechanism for the reactions of methanol (CH₃OH) with ·XH₃ (X = C, Si) radicals have been investigated by ab initio molecular orbital theory based on the CCSD(T)//B3LYP/aug-cc-pVTZ method. For the CH₃OH + ·CH₃ reaction, the major product pathways channels are H-abstraction forming PR1 (·CH₂OH + ·CH₄; 0 kcal·mol⁻¹) and PR2 (·CH₂OH + CH₄; -8.1 kcal·mol⁻¹) via transition states TS1 and TS2 lying 12.0 and 12.8 kcal·mol⁻¹ above the reactants, respectively. While for the CH₃OH + ·SiH₃ reaction, the major product pathways channels are the H-abstraction forming PR7 (·CH₂OH + SiH₄; 3.4 kcal·mol⁻¹) and substitution channels forming PR8 (H + CH₃OSiH₃; -0.3 kcal·mol⁻¹) and PR9 (·CH₃ + SiH₃OH; -28.7 kcal·mol⁻¹) via transition states TS7 (16.2 kcal·mol⁻¹), TS8 (16.5 kcal·mol⁻¹) and TS9 (17.0 kcal·mol⁻¹), respectively. The predicted geometry parameters for the species in the PESs and the heats of reaction in this work are in good agreement with available experimental data.

Article Details

References

[1] E. Marshall, Gasoline: the unclean fuel? Science, 246 (1989), 199–201.
[2] L. A. Morton, N. R. Hunter, H. D. Gesser, Methanol, a fuel for today and tomorrow, Chem. Ind., 16 (1990), 457–462.
[3] C. Anastasi, D. U. Hancock, Reaction of CH₃ radicals with methanol in the range 525 < T/K < 603, J. Chem. Soc. Faraday Trans., 86 (1990), 2553–2555.
[4] T. W. Shannon, A. G. Harrison, The reaction of methyl radicals with methanol at high temperatures, Ber. Bunsenges. Phys. Chem., 93 (1989), 633–637.
[5] I. M. Alecu, D. G. Truhlar, Computational Study of the Reactions of Methanol with the Hydroperoxyl and Methyl Radicals. 2. Accurate Thermal Rate Constants, J. Phys. Chem. A, 115 (2011), 14599–14611.
[6] S. L. Peukert, J. V. Michael, High-Temperature Shock Tube and Modeling Studies on the Reactions of Methanol with D-Atoms and CH₃-Radicals, J. Phys. Chem. A, 117 (2013), 10186–10195.
[7] C. Dombrowsky, H. G. Wagner, An investigation of the reaction between CH₃ radicals and methanol at high temperatures, Ber. Bunsenges. Phys. Chem., 93 (1989), 633–637.
[8] J. T. Jodkowski, M. T. Rayez, J. C. Rayez, T. Bérces, Theoretical Study of the Kinetics of the Hydrogen Abstraction from Methanol. 3. Reaction of Methanol with Hydrogen Atom, Methyl, and Hydroxyl Radicals, J. Phys. Chem. A, 103 (1990), 3750–3765.
[9] N. H. Thọ, N. X. Sáng, Động học phản ứng của gốc metyl với metanol, Tạp chí Khoa học Tự nhiên và Công nghệ, 34 (2018), 111–117.
[10] M. J. Frisch, G. W. Trucks, H. B. Schlegel, J. A. Pople, Gaussian, Inc., Pittsburgh PA, (2003).
[11] E. E. Baroody, G. A. Carpenter, Heats of formation of propellant compounds (U), Rpt. Naval Ordnance Systems Command Task No. 331-003/067-1/UR2402-001 for Naval Ordnance Station, Indian Head, MD, (1972), 1–9.
[12] H. B. Schlegel, Heats of Formation of Fluorine-Substituted Silylenes, Silyl Radicals, and Silanes, J. Phys. Chem., 88 (1984), 6254–6258.
[13] W. Tsang, Heats of Formation of Organic Free Radicals by Kinetic Methods in Energetics of Organic Free Radicals, Blackie Academic and Professional, London, (1996), 22–58.
[14] B. Ruscic, J. E. Boggs, A. Burcat, A. G. Csaszar, J. Demaison, R. Janoschek, J. M. L. Martin, M. L. Morton, M. J. Rossi, J. F. Stanton, P. G. Szalay, P. R. Westmoreland, F. Zabel, T. Berces, IUPAC Critical Evaluation of Thermochemical Properties of Selected Radicals. Part I, J. Phys. Chem. Ref. Data, 34 (2005), 573.