Preparation of MgAl2O4 Nanopowder using Combustion Synthesis Method and Its Properties

Ngoc Yen Nguyen1, Hoang Duc Anh Chu1, Thi Ngoc Mai Bui2, Quoc Khanh Dang2, Minh Hai Le1,
1 University of Science and Technology – No. 1, Dai Co Viet Str., Hai Ba Trung, Ha Noi, Viet Nam
2 Vietnam Maritime University, 484 Lach Tray, Le Chan, Haiphong, Vietnam

Main Article Content

Abstract

Preparation of a high purity powder is one of the most important steps in producing transparent MgAl2O4 ceramic. Additionally, the particles are required to have nanoscale scale, uniform size and least agglomeration, which make diffusion enhanced at grain boundary during sintering process, promote densification to achieve full dense bulk material. In present work, solution combustion synthesis was carried out to prepare MgAl2O4 nanopowder from magnesium nitrate hydrate (Mg(NO3)2.6H2O) and aluminum nitrate hydrate (Al(NO3)3.9H2O) as oxidizers and urea CH4N2O as a fuel. The obtained products present large agglomerates of nanoscale particles with average size of about 20 nm. Investigation into the influence of the milling processing on deagglomeration efficiency and properties of sintered samples showed that increasing milling time and ball-to-weight ratio led to reduce agglomerate size and fraction, consequently, enhanced significantly shrinkage value, relative density and compressive strength of sintered MgAl2O4 samples. The relative density and the compressive strength achieved highest values of 98% and 155 MPa, respectively, regarding to the powder with milling condition of 48h milling time and 30/1 ball-to-powder ratio.

Article Details

References

[1]. Mukasyan, A. S., Epstein, P. & Dinka, P. Solution combustion synthesis of nanomaterials. Proc. Combust. Inst. 31, 1789–1795 (2007).
[2]. Ganesh, I. A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. Int. Mater. Rev. 58, 63–112 (2013).
[3]. Rubat du Merac, M., Kleebe, H.-J., Müller, M. M. & Reimannis, I. E. Fifty Years of Research and Development Coming to Fruition: Unraveling the Complex Interactions during Processing of Transparent Magnesium Aluminate (MgAl2O4) Spinel. J. Am. Ceram. Soc. 96, 3341–3365 (2013).
[4]. Patterson, M. C. L., DiGiovanni, A. A., Fehrenbacher, L. & Roy, D. W. Spinel: gaining momentum in optical applications. in Window and Dome Technologies VIII 5078, 71–80 (International Society for Optics and Photonics, 2003).
[5]. Bayya, S. S., Chin, G. D., Villalobos, G., Sanghera, J. S. & Aggarwal, I. D. VIS-IR transmitting windows. in Window and Dome Technologies and Materials IX 5786, 262–272 (International Society for Optics and Photonics, 2005).
[6]. Kong, L. B. et al. Transparent Ceramics. (Springer International Publishing, 2015). doi:10.1007/978-3-319-18956-7
[7]. Apetz, R. & Bruggen, M. P. Transparent alumina: a light-scattering model. J. Am. Ceram. Soc. 86, 480–486 (2003).
[8]. Krell, A., Hutzler, T. & Klimke, J. Physics and Technology of Transparent Ceramic Armor: Sintered Al2O3 vs Cubic Materials. (DTIC Document, 2006).
[9]. Krell, A., Klimke, J. & Hutzler, T. Advanced spinel and sub-μm Al2O3 for transparent armour applications. J. Eur. Ceram. Soc. 29, 275–281 (2009).
[10]. Bafrooee, H. B. & Ebadzadeh, T. MgAl2O4 nanopowder synthesis by microwave assisted high energy ball-milling. Ceram. Int. 39, 8933–8940 (2013).
[11]. Guo, J.-K., Li, J. & Kou, H.-M. Advanced Ceramic Materials. in Modern Inorganic Synthetic Ceramic 463–492 (Elsevier, 2017). doi:10.1016/B978-0-444-63591-4.00017-3
[12]. Sanjabi, S. & Obeydavi, E. Synthesis and characterization of nanocrystalline MgAl2O4 spinel via modified sol-gel method. J. Alloys Compd. 645, 535–540 (2016).
[13]. Duan, J. et al. Synthesis and characterization of porous magnesium aluminate spinel by hydrothermal process. IOP Conf. Ser. Earth Environ. Sci. 81, 012028 (2017).
[14]. Li, H., Liu, Y. Q., Liu, H. & Yang, Z. J. Synthesis of magnesium aluminate spinel nano-powders by co-precipitation method. Mater. Res. Innov. 19, S9-20-S9-23 (2015).
[15]. Mazzoni, A. D., Sainz, M. A., Caballero, A. & Aglietti, E. F. Formation and sintering of spinels (MgAl2O4) in reducing atmospheres. Mater. Chem. Phys. 78, 30–37 (2003).
[16]. Munir, Z. A. & Anselmi-Tamburini, U. Self-propagating exothermic reactions: The synthesis of high-temperature materials by combustion. Mater. Sci. Rep. 3, 277–365 (1989).
[17]. Mimani, T. & Patil, K. C. Solution combustion synthesis of nanoscale oxides and their composites. Mater. Phys. Mech. 4, 134–137 (2001).
[18]. Li, F., Ran, J., Jaroniec, M. & Qiao, S. Z. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale 7, 17590–17610 (2015).
[19]. Varma, A., Mukasyan, A. S., Rogachev, A. S. & Manukyan, K. V. Solution Combustion Synthesis of Nanoscale Materials. Chem. Rev. 116, 14493–14586 (2016).
[20]. Moraes, G. G., Pozzobom, I. E. F., Fernandes, C. P. & De Oliveira, A. P. N. MgAl 2 O 4 foams obtained by combustion synthesis. Chem Eng Trans 43, 1801–1806 (2015).
[21]. Bai, J. H. & Liu, J. C. Solution combustion synthesis and sintering behavior of porous MgAl2O4 powders. Sci. Sinter. 42, 133–141 (2010).
[22]. Ianoş, R., Lazău, I., Păcurariu, C. & Barvinschi, P. Solution combustion synthesis of MgAl2O4 using fuel mixtures. Mater. Res. Bull. 43, 3408–3415 (2008).
[23]. Carvalho, L. S. et al. Effect of Urea Excess on the Properties of the MgAl2O4 Obtained by Microwave-Assisted Combustion. Mater. Res. 0–0 (2017). doi:10.1590/1980-5373-mr-2017-0189
[24]. Ianoş, R. & Lazău, R. Combustion synthesis, characterization and sintering behavior of magnesium aluminate (MgAl2O4) powders. Mater. Chem. Phys. 115, 645–648 (2009).
[25]. Choudhary, A., Rajeswari, K., Rao, Y. S. & Johnson, R. Effect of Fuel Concentration on the Properties of Combustion Synthesized MgAl 2 O 4 Spinel Powders. Trans. Indian Ceram. Soc. 73, 303–306 (2004).