On a Quasi-Isomorphic Structure Between Polynomial Ring with Two Cyclotomic Cosets and Finite Field

Danh Cuong Le1, , Binh Nguyen1
1 Posts and Telecommunications Institute of Technology, 122 Hoang Quoc Viet, Cau Giay, Hanoi

Main Article Content

Abstract

The well-known problem of computing discrete logarithms in finite field $GF(p)$ has acquired importance in many studies due to its applicability in cryptography. This is widely thought to be very computationnaly hard if large prime p is selected. Polynomial ring with two cyclotomic cosets $Z_{2}[x]/(x^{n}+1)$ is a special ring with only two idempotent elements. In this paper, a quasi-isomorphic structure between polynomial ring with two cyclotomic cosets $Z,[x]/(x^{n}+1)$ and field $GF(p)$ with only one idempotent element (where $p=2^{n}-1$ is Mersenne primer) is presented. Conclusions on this isomorphism are the result of mathematical analysis and are illustrated by concrete examples. Based on this structure we can construct Discrete logarithm problem over polynomial rings. Discrete logarithm problem over polynomial rings can be used in many cryto-systems (for authentication, digital signatures, encryption.etc..).

Article Details

References

[1] Menezes A. J., Van Oorchot P. C., ""Handbook of Applied Cryptography"", CRC Press, 1998;
[2] Đặng Hoài Bắc, “Các mã cyclic và cyclic cục bộ trên vành đa thức có hai lớp kề cyclic”, Luận án Tiến sĩ Kỳ thuật, Học viện Công nghệ Bưu chính Viễn thông, 2010;
[3] Nguyễn Bình, “Hệ mật tựa ElGamal trên vành đa thức có 2 lớp kề cyclic”, Tạp chí Khoa học và công nghệ, 2012
[4] Donald E.Knuth, ""The Art of computer programming"", 1968.