Quantum Chemical Studies Of Structural Parameters And Molecular Properties Of Pigment 2-[(2-methoxy-4-nitrophenyl)azo]-N-(2-methoxyphenyl)-3-oxo-butanamide
Main Article Content
Abstract
Pigments play an important role in the paint industry. The structural parameters and molecular properties of 2-[(2-methoxy-4-nitrophenyl)azo]-N-(2-methoxyphenyl)-3-oxo-Butanamide (pigment P.Y.74) has been determined by quantum calculation at the B3LYP/6-31+G(d) level of theory. Our results show that the trans – trans structure of pigment P.Y.74 is the most stable. The 46th orbital is the HOMO orbital when the 47th orbital is the LUMO orbital and the HOMO-LUMO energy gap of the title molecule is found to be 0.067815 a.u. Besides, the potential energy surface for its decomposition has been investigated at the same level of theory. The results may be helpful for experimental studies in the future.
Keywords
Quantum calculation, pigment, potential energy surface
Article Details
References
[1] A. Gürses, M. Açıkyıldız, K. Güneş, M. S. Gürses, Dyes and Pigments, Springer, 2016.
[2] B. H. Berrie, S. Q. Lomax, Azo Pigments: Their History, Synthesis, Properties, and Use in Artisús' Materials, National Gallery of Art, Washington, 1997.
[3] S. Özkınali, M. S. Çavuş, B. Sakin, Synthesis, Characterisation and DFT Calculations of Azo-Imine Dyes, JOTCSA, 5, 2017, 159-178.
[4] L. A. R. Al-Rubaie, R. J. Mhessn, Synthesis and Characterization of Azo Dye Para Red and New Derivatives, E-J. Chem., 9, 2012, 465-470.
[5] H. A. S. A. Majeed, A. Y. Al-Ahmad, K. A. Hussain, The Preparation, Characterization and the Study of the Linear Optical Properties of a new Azo Compound, Journal of Basrah Researches, 37, 2011, 64-73.
[6] G. Dent, Vibrational Spectroscopy of Colors, Dyes and Pigments, Handbook of Vibrational Spectroscopy, 2006, 2909-2934.
[7] M. J. Frisch, et al., Gaussian 09, Revision A.02, Gaussian, Inc., Pittsburgh PA, 2009.
[8] T. Lu, F. Chen, Multiwfn, A Multifunctional Wavefunction Analyzer, J. Comp. Chem., 33, 2012, 580-592.
[9] A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98, 1993, 5648.
[10] C. Lee, W. Yang, R. G. Parr, Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37, 1988, 785-789.
[11] T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys., 90, 1989, 1007.
[12] A. Doi, M. Baba, S. Kasahara, H. Katô, J. Mol. Spectrosc., 227, 180, 2004
[13] J. Pliva, J. W. C. Johns, L. Goodman, J. Mol. Spectrosc., 140, 214, 1990.
[14] Herzberg, G., Electronic spectra and electronic structure of polyatomic molecules, Van Nostrand, New York, 1966.
[15] Kuchitsu(ed.), Landolt – Bornstein, Group II: Atomic and Molecular Physics Volume 15: Structure Data of Free Polyatomic Molecules, Springer Verlag, Berlin, 1987.
[2] B. H. Berrie, S. Q. Lomax, Azo Pigments: Their History, Synthesis, Properties, and Use in Artisús' Materials, National Gallery of Art, Washington, 1997.
[3] S. Özkınali, M. S. Çavuş, B. Sakin, Synthesis, Characterisation and DFT Calculations of Azo-Imine Dyes, JOTCSA, 5, 2017, 159-178.
[4] L. A. R. Al-Rubaie, R. J. Mhessn, Synthesis and Characterization of Azo Dye Para Red and New Derivatives, E-J. Chem., 9, 2012, 465-470.
[5] H. A. S. A. Majeed, A. Y. Al-Ahmad, K. A. Hussain, The Preparation, Characterization and the Study of the Linear Optical Properties of a new Azo Compound, Journal of Basrah Researches, 37, 2011, 64-73.
[6] G. Dent, Vibrational Spectroscopy of Colors, Dyes and Pigments, Handbook of Vibrational Spectroscopy, 2006, 2909-2934.
[7] M. J. Frisch, et al., Gaussian 09, Revision A.02, Gaussian, Inc., Pittsburgh PA, 2009.
[8] T. Lu, F. Chen, Multiwfn, A Multifunctional Wavefunction Analyzer, J. Comp. Chem., 33, 2012, 580-592.
[9] A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98, 1993, 5648.
[10] C. Lee, W. Yang, R. G. Parr, Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37, 1988, 785-789.
[11] T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys., 90, 1989, 1007.
[12] A. Doi, M. Baba, S. Kasahara, H. Katô, J. Mol. Spectrosc., 227, 180, 2004
[13] J. Pliva, J. W. C. Johns, L. Goodman, J. Mol. Spectrosc., 140, 214, 1990.
[14] Herzberg, G., Electronic spectra and electronic structure of polyatomic molecules, Van Nostrand, New York, 1966.
[15] Kuchitsu(ed.), Landolt – Bornstein, Group II: Atomic and Molecular Physics Volume 15: Structure Data of Free Polyatomic Molecules, Springer Verlag, Berlin, 1987.