Bioconversion of Shrimp By-Product into Carotenoids Using Pigmented Yeast Sporidiobolus Pararoseus QBioconversion of Shrimp By-Product into Carotenoids Using Pigmented Yeast Sporidiobolus Pararoseus Q

Hoang Lan Nghiem1, Kim Anh To1, Tuan Anh Pham1,
1 Hanoi University of Science and Technology, Ha Noi, Vietnam

Main Article Content

Abstract

Chitin, a natural polysaccharide, is the second most abundant biopolymer in the world after cellulose. It consists of N-acetylglucosamine (NAG) monomers and finds widespread applications in the food, cosmetics, and pharmaceutical industries. In this study, we selected pigmented yeast strains to synthesize carotenoids from NAG and optimized the conditions for carotenoid production. The results demonstrated that the selected strain Sporidiobolus pararoseus Q could accumulate β-carotene and carotenoids, reaching 518.84 µg/g dry biomass and 595.48 µg/g dry biomass, respectively, after 96 hours of fermentation with 30 g/L NAG at pH 5.


The two-step fermentation first with 80 g/L of glucose and then 50 g/L of NAG increased the carotenoids and ²-carotene yields by 41% and 35%, achieving 786.69 µg/g and 632.19 µg/g, respectively. The ability to use NAG as the feedstock for carotenoid production not only adds value to shrimp by-products but also contributes to controlling environmental pollution

Article Details

References

[1] R. V. Singh and K. Sambyal, An overview of beta carotene production: Current status and future prospects, Food Biosci., vol. 47, p. 101717, Jun. 2022.https://doi.org/10.1016/j.fbio.2022.101717
[2] C. H. M. van der Loo, M. L. G. Borst, K. Pouwer, and A. J. Minnaard, The dehydration of N- acetylglucosamine (GlcNAc) to enantiopure dihydroxyethyl acetamidofuran (Di-HAF), Org.Biomol. Chem., vol. 19, no. 46, pp. 10105-10111, Dec. 2021. https://doi.org/10.1039/D1OB02004H
[3] L. I. Alvarez-Añorve, M. L. Calcagno, and J. Plumbridge, Why does Escherichia coli grow more slowly on glucosamine than on N- acetylglucosamine? Effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates, J. Bacteriol., vol. 187, no. 9, pp. 2974- 2982, May 2005. https://doi.org/10.1128/JB.187.9.2974-2982.2005
[4] K. Inokuma, M. Takano, and K. Hoshino, Direct ethanol production from N-acetylglucosamine and chitin substrates by Mucor species, Biochem. Eng. J., vol. 72, pp. 24-32, Mar. 2013. https://doi.org/10.1016/j.bej.2012.12.009
[5] S. Wu, C. Hu, X. Zhao, and Z. K. Zhao, Production of lipid from N‐acetylglucosamine by Cryptococcus curvatus, Eur. J. Lipid Sci. Technol., vol. 112, no. 7, pp. 727-733, Jul. 2010 https://doi.org/10.1002/ejlt.201000005
[6] G. L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem., vol. 31, no. 3, pp. 426-428, Mar. 1959. https://doi.org/10.1021/ac60147a030
[7] M. Michelon, T. De Matos De Borba, R. Da Silva Rafael, C. A. V. Burkert, and J. F. De Medeiros Burkert, Extraction of carotenoids from Phaffia rhodozyma: A comparison between different techniques of cell disruption, Food Sci. Biotechnol., vol. 21, no. 1, pp. 1-8, Feb. 2012. https://doi.org/10.1007/s10068-012-0001-9
[8] L. M. J. de Carvalho et al., Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins
(Cucurbita moschata Duch): A preliminary study, Food Res. Int., vol. 47, no. 2, pp. 337-340, Jul. 2012. https://doi.org/10.1016/j.foodres.2011.07.040
[9] H. K. Lichtenthaler, Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes, in Methods in Enzymology, vol. 148, Elsevier, 1987, pp. 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
[10] K. D. Pham et al., Effect of light on carotenoid and lipid production in the oleaginous yeast Rhodosporidium toruloides, Biosci. Biotechnol. Biochem., vol. 84, no. 7, pp. 1501-1512, Jul. 2020. https://doi.org/10.1080/09168451.2020.1740581
[11] Mata-Gosmez et al., , Biotechnological production of carotenoids by yeasts: an overview, Microbial Cell Factories, vol. 13, pp. 12-23, Jan. 2014. https://doi.org/ 10.1186/1475-2859-13-12.
[12] C. Li et al., Increased torulene accumulation in red yeast Sporidiobolus pararoseus NGR as stress response to high salt conditions, Food Chem., vol. 237, pp. 1041-1047, Dec. 2017. https://doi.org/10.1016/j.foodchem.2017.06.033
[13] M. Han, Q. He, and W.-G. Zhang, Carotenoids production in different culture conditions by Sporidiobolus pararoseus, Prep. Biochem.Biotechnol., vol. 42, no. 4, pp. 293-303, Jul. 2012. https://doi.org/10.1080/10826068.2011.583974
[14] G. Minyuk, R. Sidorov, and A. Solovchenko, Effect of nitrogen source on the growth, lipid, and valuable carotenoid production in the green microalga Chromochloris zofingiensis, J. Appl. Phycol., vol. 32, no. 2, pp. 923-935, Apr. 2020. https://doi.org/10.1007/s10811-020-02060-0 [15] M. M. S. Cabral et al., Carotenoids production from a newly isolated Sporidiobolus pararoseus strain by submerged fermentation, Eur. Food Res. Technol., vol. 233, no. 1, pp. 159-166, Jul. 2011. https://doi.org/10.1007/s00217-011-1510-0
[16] Y. N. Nagaraj et al., Identification, Quantification and Kinetic Study of Carotenoids and Lipids in Rhodotorula toruloides CBS 14 Cultivated on Wheat Straw Hydrolysate, Fermentation, vol. 8, no. 7, Jul. 2022. https://doi.org/10.3390/fermentation8070300