Synthesis by Thermal Oxidation and Gas Sensing Properties of Fe2O3 Nanorods

Thanh Nghi Nguyen1, Xuan Hien Vu1, , Duc Vuong Dang1, Duc Chien Nguyen1
1 Institute of Technical Physics, Hanoi University of Science and Technology, Hanoi, Vietnam

Main Article Content

Abstract

Iron oxide nanorods were synthesized by thermal oxidation of iron foil in the air at 300-500 oC. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to investigate the crystal structures and morphologies properties of the Fe2O3 nanorods. The gas sensing properties of the Fe2O3 nanorods were investigated using a static-gas measuring system in a range of 300-500 oC with the target gases of C2H5OH, CH3COCH3, LPG, and NH3. The results show that Fe2O3 nanorods possess high sensitivity and selectivity toward CH3COCH3. The highest response of 19 was recorded with 1000 ppm CH3COCH3 at the operating temperature of 400 oC.

Article Details

References

[1] S. Bhassyvasantha, N. Fredj, S. D. Mahapatra, W. Jennings, I. Dutta, B. S. Majumdar, Whisker Mitigation Mechanisms in Indium-Doped Tin Thin Films: Role of the Surface, J. Electron. Mater., vol. 47, no. 10, pp. 6229–6240, 2018, http://doi.org/10.1007/s11664-018-6522-0.
[2] S. M. Arnold, S. E. Koonce, Filamentary growths on metals at elevated temperatures, J. Appl. Phys., vol. 27, no. 8, p. 964, 1956, http://doi.org/10.1063/1.1722526.
[3] X. Jiang, T. Herricks, Y. Xia, CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air, Nano Lett., vol. 2, no. 12, 2002, http://doi.org/10.1021/nl0257519.
[4] Y. Zhu, C. H. Sow, Hotplate technique for nanomaterials, Sel. Top. Nanosci. Nanotechnol., vol. 4, no. 2, pp. 149–169, 2009, http://doi.org/10.1142/9789812839565_0007.
[5] J. T. Chen et al., CuO nanowires synthesized by thermal oxidation route, J. Alloys Compd., vol. 454, no. 1–2, pp. 268–273, 2008, http://doi.org/10.1016/j.jallcom.2006.12.032.
[6] L. Liao et al., Morphology controllable synthesis of α-Fe2O3 1D nanostructures: Growth mechanism and nanodevice based on single nanowire, J. Phys. Chem. C, vol. 112, no. 29, pp. 10784–10788, 2008, http://doi.org/10.1021/jp802968a.
[7] T. Yu et al., Controlled growth and field-emission properties of cobalt oxide nanowalls, Adv. Mater., vol. 17, no. 13, pp. 1595–1599, 2005, http://doi.org/10.1002/adma.200500322.
[8] F. C. Cheong et al., WO3-x nanorods synthesized on a thermal hot plate, J. Phys. Chem. C, vol. 111, no. 46, pp. 17193–17199, 2007, http://doi.org/10.1021/jp074569z.
[9] R. Malik, V. K. Tomer, Y. K. Mishra, L. Lin, Functional gas sensing nanomaterials: A panoramic view, Appl. Phys. Rev., vol. 7, no. 2, 2020, http://doi.org/10.1063/1.5123479.
[10] W. Tan, J. Tan, L. Fan, Z. Yu, J. Qian, X. Huang, Fe2O3-loaded NiO nanosheets for fast response/recovery and high response gas sensor, Sensors Actuators, B Chem., vol. 256, pp. 282–293, 2018, http://doi.org/10.1016/j.snb.2017.09.187.
[11] C. Liu, J. Mao, X. Zhang, L. Yu, Selenium-doped Fe2O3-catalyzed oxidative scission of C
[12] X. Zhang et al., Porous-Fe2O3 nanoparticles encapsulated within reduced graphene oxide as superior anode for lithium-ion battery, Nanotechnology, vol. 31, no. 14, 2020, http://doi.org/10.1088/1361-6528/ab667d.
[13] H. Baniamerian, P. Tsapekos, M. Alvarado-Morales, S. Shokrollahzadeh, M. Safavi, I. Angelidaki, Anti-algal activity of Fe2O3–TiO2 photocatalyst on Chlorella vulgaris species under visible light irradiation, Chemosphere, vol. 242, 2020, http://doi.org/10.1016/j.chemosphere.2019.125119.
[14] D. Jlidi et al., Ethanol sensing enhancement of low-cost sprayed α-Fe2O3 films, Mater. Res. Express, vol. 6, no. 12, 2019, http://doi.org/10.1088/2053-1591/ab5691.
[15] X. Wang et al., Oxygen vacancy defects engineering on Ce-doped α-Fe2O3 gas sensor for reducing gases, Sensors Actuators, B Chem., vol. 302, no. August 2019, p. 127165, 2020, http://doi.org/10.1016/j.snb.2019.127165.
[16] A. Pramanik, S. Maiti, S. Mahanty, Metal hydroxides as a conversion electrode for lithium-ion batteries: A case study with a Cu(OH)2 nanoflower array, J. Mater. Chem. A, vol. 2, no. 43, pp. 18515–18522, 2014, http://doi.org/10.1039/c4ta03379e.
[17] L. Liao et al., Multifunctional CuO nanowire devices: P-type field effect transistors and CO gas sensors, Nanotechnology, vol. 20, no. 8, 2009, http://doi.org/10.1088/0957-4484/20/8/085203.
[18] D. Kohl, Surface processes in the detection of reducing gases with SnO2 based devices, Sensors and Actuators, vol. 18, no. 1, pp. 71–113, 1989, http://doi.org/10.1016/0250-6874(89)87026-X.
[19] J. Ma et al., Porous platelike hematite mesocrystals: Synthesis, catalytic and gas-sensing applications, J. Mater. Chem., vol. 22, no. 23, pp. 11694–11700, 2012, http://doi.org/10.1039/c2jm30216k.
[20] Q. Tan, J. Fang, W. Liu, J. Xiong, W. Zhang, Acetone sensing properties of a gas sensor composed of carbon nanotubes doped with iron oxide nanopowder, Sensors, vol. 15, no. 11, pp. 28502–28512, 2015, http://doi.org/10.3390/s151128502.
[21] Y. Tao, Q. Gao, J. Di, X. Wu, Gas sensors based on -Fe2O3 nanorods, nanotubes and nanocubes, J. Nanosci. Nanotechnol., vol. 13, no. 8, pp. 5654–5660, 2013, http://doi.org/10.1166/jnn.2013.7559.
[22] H. Gong, C. Zhao, G. Niu, W. Zhang, F. Wang, Construction of 1D/2D α-Fe2O3/SnO2 Hybrid Nanoarrays for Sub-ppm Acetone Detection, Research, vol. 2020, pp. 1–11, 2020, http://doi.org/10.34133/2020/2196063.
[23] S. Park, H. Kheel, G. J. Sun, T. Ko, W. I. Lee, C. Lee, Acetone gas sensing properties of a multiple-networked Fe2O3-functionalized CuO nanorod sensor, J. Nanomater., vol. 2015, pp. 1–7, 2015, http://doi.org/10.1155/2015/830127.