Flavonoid Glycoside Constituents from the Leaves of Hibiscus Tiliaceus

Huyen Tram Le , Thu Huong Tran, Van Thong Nguyen, Hoang Minh Nguyen

Main Article Content

Abstract

Hibiscus tiliaceus L. is a typical plant of tropical climate and found in the regions of mangroves in Vietnam. It is also one of the most common secondary trees and is frequently seen in mangrove forests. In spite of all part of this plant are used in folk medicine, studies of its chemical constituent have been very little. Four flavonoids (1‒4) were isolated from a methanolic extract of H. tiliaceus leaves (Malvaceae) using various chromatographic separations. Their structures were elucidated to be astragalin (1), isoquercitrin (2), rutin (3), and trans-tiliroside (4) by detailed analysis via spectroscopic techniques (1D, 2D NMR, and ESI-MS data) as well as comparison with those reported.

Article Details

References

[1] U.A. Dasuki. Hibiscus. In: van Valkenburg JLCH, Bunyapraphatsara N, eds. Plant Resources of SouthEast Asia Medicinal and Poisonous Plants 2 12 (2001) 297-303.
[2] Võ Văn Chi, Từ điển cây thuốc Việt Nam, quyển 1, tr. 781-782, Nhà xuất bản Y học, 2012.
[3] D.L. Li, X.M. Li, T.G. Li, H.Y. Dang, P. Proksch, B.G. Wang. Benzaldehyde derivatives from Eurotium rubrum, an endophytic fungus derived from the mangrove plant Hibiscus tiliaceus. Chem. Pharm. Bull. 56 (2008) 1282-1285. https://doi.org/10.1248/cpb.56.1282
[4] S. Sankara, N.A.G. Ramachandran. Chemical constituents of the fruits of Hibiscus tiliaceus. Current Sci. 42 (1973) 770-771.
[5] S. Ali, P. Singh, R.H. Thornson. Naturally occurring quinones. Part 28. Sesquiterpenoid quinones and related compounds from Hibiscus tiliaceus. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry 1 (1980) 257-259. https://doi.org/10.1039/p19800000257
[6] T. Μatsumoto, D. Imahori, K. Achiwa, Y. Saito, T. Ohta, T. Yoshida, N. Kojima, M. Yamashita, Y. Nakayama, T. Watanabe. Chemical structures and cytotoxic activities of the constituents isolated from Hibiscus tiliaceus. Fitoterapia 142 (2020) 104524. https://doi.org/10.1016/j.fitote.2020.104524
[7] L. Li, X. Huang, I. Sattler, H. Fu, S. Grabley, W. Lin. Structure elucidation of a new friedelane triterpene from the mangrove plant Hibiscus tiliaceus. Magn. Reson. Chem. 44 (2006) 624-628. https://doi.org/10.1002/mrc.1802
[8] J.J. Chen, S.Y. Huang, C.Y. Duh, I.S. Chen, T.C. Wang, H.Y. Fang. A new cytotoxic amide from the stem wood of Hibiscus tiliaceus. Planta Med. 72 (2006) 935-938. https://doi.org/10.1055/s-2006-931604
[9] L. Li, I. Sattler, Z. Deng, I. Groth, G. Walther, K.D. Menzel, G. Peschel, S. Grabley, W. Lin. A-secooleane-type triterpenes from Phomopsis sp. (strain HKI0458) isolated from the mangrove plant Hibiscus tiliaceus. Phytochemistry 69 (2008) 511-517. https://doi.org/10.1016/j.phytochem.2007.08.010
[10] C. Feng, X.M. Li, N.Y. Ji, B.G. Wan. Triterpenoids from the mangrove plant Hibiscus tiliaceus. Helv. Chim. Acta 91 (2008) 850-855. https://doi.org/10.1002/hlca.200890088
[11] H.J. Yana, X.M. Li, C.S. Li, B.G. Wang. Alkaloid and anthraquinone derivatives produced by the marine-derived endophytic fungus Eurotium rubrum. Helv. Chim. Acta 95 (2012) 163-168. https://doi.org/10.1002/hlca.201100255
[12] H. Wang, Z. Lu, H.J. Qu, P. Liu, C. Miao, T. Zhu, J. Li, K. Hong, W. Zhu. Antimicrobial aflatoxins from the marine-derived fungus Aspergillus flavus 092008. Arch. Pharm. Res. 35 (2012) 1387-1392. https://doi.org/10.1007/s12272-012-0808-1
[13] S.M. AbdulAwal, S. Nazmir, S. Nasrin, T.R. Nurunnabi, S.J. Uddin. Evaluation of pharmacological activity of Hibiscus tiliaceus. SpringerPlus 5 (2016) 1209. https://doi.org/10.1186/s40064-016-2891-0
[14] C.L. Cheng, Z.Z. Wang, P.L. Li, X.W. Zhang, R.C. Wu, H.Y. Zhu, X.L. Tang, G.Q. Li. Tetracyclic triterpenoids isolated from semi-mangrove plant Hibiscus tiliaceus. Chinese Chem. Lett. 24 (2013) 1080-1082. https://doi.org/10.1016/j.cclet.2013.07.011
[15] S. Chae, S. Lee, S.S. Kang, H.J. Lee. Flavone glucosides from the leaves of Helianthus tuberosus. Nat. Prod. Sci. 8 (2002) 141-143.
[16] M. Singh, M. Kaur, O. Silakari. Flavones: An important scaffold for medicinal chemistry. European J. Med. Chem. 84 (2014) 206-239. https://doi.org/10.1016/j.ejmech.2014.07.013
[17] S. Tsukamoto, K. Tomise, M. Aburatani, H. Onuki, H. Hirorta, E. Ishiharajima, T. Ohta. Isolation of cytochrome P450 inhibitors from strawberry fruit, Fragaria ananassa. J. Nat. Prod. 67 (2004) 1839-1841. https://doi.org/10.1021/np0400104
[18] W. Qiao, C. Zhao, N. Qin, H.Y. Zhai, H.Q. Duan. Identification of trans-tiliroside as active principle with anti-hyperglycemic, anti-hyperlipidemic and antioxidant effects from Potentilla chinesis. J. Ethnopharmacol. 135 (2011) 515-521. https://doi.org/10.1016/j.jep.2011.03.062
[19] S.Y. Park, J.S. Kim, S.Y. Lee, K. Bae, S.S. Kang. Chemical constituents of Lathyrus davidii. Nat. Prod. Sci. 14 (2008) 281-288.
[20] K. Kazuma, N. Noda, M. Suzuki. Malonylated flavonol glycosides from the petals of Clitoria ternatea. Phytochemistry 62 (2003) 229-237. https://doi.org/10.1016/S0031-9422(02)00486-7