Quantum Mechanical Approach to Gas Phase Reaction of Isopropanol with Sulfanyl Radical
Main Article Content
Abstract
i-C3H7OH (IPA) is one of the potential fuel additives. The reaction mechanism of isopropanol with sulfanyl radical was investigated at the CCSD(T)//B3LYP/6-311+G(3df,2p) level of theory. Ten possible reaction pathways giving PR1-PR10 including three H-abstraction reactions and seven substitution reactions were considered. Based on the determined potential energy surface and molecular parameters, the rate constants and branching ratios of each reaction pathway were calculated at the temperature range of 298K - 2000K by using the transition state theory considering the Eckart tunnel effect. The kinetics results showed that at 298 K, the reaction products were mainly PR2 ((CH3)2COH + H2S) (~ 100%). However, at 2000 K, the contribution of PR2 decreased to 77.8% of the total product, while, PR3 (CH3CH(CH2)OH + H2S) and PR1 ((CH3)2CHO + H2S) accounted for 16.7% and 5.5% of the total product, respectively.
Keywords
Quantum calculation, fuel additives, sulfanyl radical, i-C3H7OH
Article Details
References
[1] J. A. Barnard, The pyrolysis of isopropanol, Trans. Faraday Soc., 56, 72-79 (1960). https://doi.org/10.1039/tf9605600072
[2] M. G. Gonzalez, L. Lew, R. E. Cunningham, Determinacion de la cinetica de descomposicion termica de alcoholes e hidrocarburos mediante un reactor pulso, Lab. Ensayo Mater. Invest. Tecnol. Prov. Buenos Aires Publ., 2, 103 - 123 (1971). https://digital.cic.gba.gob.ar/handle/11746/585
[3] A. B. Trenwith, J. Chem. Soc., Thermal decomposition of isopropanol, Faraday Trans., 71, 2405-2412 (1975). https://doi.org/10.1039/f19757102405
[4] B. H. Bui, R. S. Zhu, and M. C. Lin, Thermal decomposition of iso-propanol: First-principles prediction of total and product-branching rate constants, J. Chem. Phys., 117, 11188 - 11195 (2002). https://doi.org/10.1063/1.1522718
[5] A. Galano, J. R. Alvarez-Idaboy, G. Bravo-Perez, M. E. Ruiz-Santoyo, Gas phase reactions of C1-C4 alcohols with the OH radical: A Quantum mechanical approach, Phys. Chem. Chem. Phys., 4, 4648-4662 (2002). https://doi.org/10.1039/B205630E
[6] P. Gray, A. A. Herod, Methyl radical reactions with isopropanol and methanol, their ethers and their deuterated derivatives, Trans. Faraday Soc., 64, 2723-2734 (1968). https://doi.org/10.1039/tf9686402723
[7] A. Bierbach, I. Barnes, K. H. Becker, Rate constants of the Br-initiated gas-phase oxidation of a series of alcohols, furans and benzenes at 300 ± 2 K, Atmos. Environ., 33, 2981 - 2992 (1999). https://doi.org/10.1016/S1352-2310(99)00084-9
[8] T. Khatoon, J. Edelbuttel-Einhaus, K. Hoyermann, H. Gg. Wagner, Rates and mechanisms of the reactions of ethanol and propanol with fluorine and chlorine atoms, Ber. Bunsenges. Phys. Chem., 93, 626 - 632 (1989). https://doi.org/10.1002/bbpc.19890930521
[9] R. Walsh, S. W. Benson, Kinetics and mechanism of the gas phase reaction between iodine and isopropyl alcohol and the tertiary carbon-hydrogen bond strength in isopropyl alcohol, J. Am. Chem. Soc., 88, (1966). https://doi.org/10.1021/ja00967a003
[10] D. Wojcik-Pastuszka, A. Gola, E. Ratajczak, Gas phase kinetics of the reaction system of 2NO <-> N2O4 and simple alcohols between 293-358 K, Polish J. Chem., 79, 1301-1313 (2005).
[11] S. Langer, E. Ljungstrom, Rates of reaction between the nitrate radical and some aliphatic alcohols, J. Chem. Soc. Faraday Trans., 91, 405-410 (1995). https://doi.org/10.1039/FT9959100405
[12] A. H. Sehon and B. deB. Darwent, The Thermal Decomposition of Mercaptans, J. Am. Chem. Soc., 76, 19, 4806-4810 (1954). https://doi.org/10.1021/ja01648a011
[13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, J. A. Pople, Gaussian, Inc., Pittsburgh PA, (2003).
[14] J. R. Barker et al., MultiWell Programe Suite User Manual., University of Michigan, (2014).
[15] C. Eckart, The penetration of a potential barrier by electrons, Phys. Rev. 35, pp. 1303-1309., (1930), https://doi.org/10.1103/PhysRev.35.1303.
[16] H. Eyring, The activated complex in chemical reactions, J. Chem. Phys., vol. 3, no. 107, (1935) https://doi.org/10.1063/1.1749604.
[17] E. López, J. M. Lucas, J. de Andrés, M. Albertí, J. M. Bofill, A. Aguilar, Dehydrohalogenation and Dehydration Reactions of i-C3H7Br and i- C3H7OH by Sodium Ions Studied by Guided Ion Beam Techniques and Quantum Chemical Methods, J. Phys. Chem. A, 120, 27, 4758-4769, (2016). https://doi.org/10.1021/acs.jpca.5b11869
[18] K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Co., (1979). https://doi.org/10.1007/978-1-4757-0961-2_2
[19] A. L. Ayub, J. M. Roscoe, The reactions of atomic oxygen with 1-propanol and 2-propanol, (1979). https://doi.org/10.1139/v79-207
[20] N. Luo, D. C. Kombo, R. Osman, Theoretical studies of hydrogen abstraction from 2-Propanol by OH radical, J. Phys. Chem. A, 101, 5, 926-936, (1997). https://doi.org/10.1021/jp962021e
[21] N. T. Nghĩa, N. H. Dương, N. N. Tuệ, N. T. M. Huệ, Vận dụng lý thuyết phiếm hàm mật độ nghiên cứu cơ chế phản ứng CH3OH + HS, Tạp chí Khoa học và Công nghệ, 37 (2019) 069-073.
[22] N. H. Thọ, Nghiên cứu lý thuyết sự tạo thành Metan trong phản ứng của gốc Metyl với Propanol-2, Tạp chí Khoa học ĐHQGHN: Khoa học Tự nhiên và Công nghệ, Tập 34, Số 3, 1-3, (2018).
[23] M. Frenkel, K. N. Marsh, R.C. Wilhoit, G.J. Kabo, G.N. Roganov, Thermodynamics of Organic Compounds in the Gas State, Thermodynamics Research Center, College Station, TX, (1994).
[24] M. W. Jr. Chase, NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1-1951 (1998).
[25] NIST Chemistry Webbook (http://webbook.nist.gov/chemistry).
[26] B. Ruscic, Active thermochemical tables: sequential bond dissociation enthalpies of methane, ethane, and methanol and the related thermochemistry, J. Phys. Chem. A 119, 7810-7837 (2015). https://doi.org/10.1021/acs.jpca.5b01346
[2] M. G. Gonzalez, L. Lew, R. E. Cunningham, Determinacion de la cinetica de descomposicion termica de alcoholes e hidrocarburos mediante un reactor pulso, Lab. Ensayo Mater. Invest. Tecnol. Prov. Buenos Aires Publ., 2, 103 - 123 (1971). https://digital.cic.gba.gob.ar/handle/11746/585
[3] A. B. Trenwith, J. Chem. Soc., Thermal decomposition of isopropanol, Faraday Trans., 71, 2405-2412 (1975). https://doi.org/10.1039/f19757102405
[4] B. H. Bui, R. S. Zhu, and M. C. Lin, Thermal decomposition of iso-propanol: First-principles prediction of total and product-branching rate constants, J. Chem. Phys., 117, 11188 - 11195 (2002). https://doi.org/10.1063/1.1522718
[5] A. Galano, J. R. Alvarez-Idaboy, G. Bravo-Perez, M. E. Ruiz-Santoyo, Gas phase reactions of C1-C4 alcohols with the OH radical: A Quantum mechanical approach, Phys. Chem. Chem. Phys., 4, 4648-4662 (2002). https://doi.org/10.1039/B205630E
[6] P. Gray, A. A. Herod, Methyl radical reactions with isopropanol and methanol, their ethers and their deuterated derivatives, Trans. Faraday Soc., 64, 2723-2734 (1968). https://doi.org/10.1039/tf9686402723
[7] A. Bierbach, I. Barnes, K. H. Becker, Rate constants of the Br-initiated gas-phase oxidation of a series of alcohols, furans and benzenes at 300 ± 2 K, Atmos. Environ., 33, 2981 - 2992 (1999). https://doi.org/10.1016/S1352-2310(99)00084-9
[8] T. Khatoon, J. Edelbuttel-Einhaus, K. Hoyermann, H. Gg. Wagner, Rates and mechanisms of the reactions of ethanol and propanol with fluorine and chlorine atoms, Ber. Bunsenges. Phys. Chem., 93, 626 - 632 (1989). https://doi.org/10.1002/bbpc.19890930521
[9] R. Walsh, S. W. Benson, Kinetics and mechanism of the gas phase reaction between iodine and isopropyl alcohol and the tertiary carbon-hydrogen bond strength in isopropyl alcohol, J. Am. Chem. Soc., 88, (1966). https://doi.org/10.1021/ja00967a003
[10] D. Wojcik-Pastuszka, A. Gola, E. Ratajczak, Gas phase kinetics of the reaction system of 2NO <-> N2O4 and simple alcohols between 293-358 K, Polish J. Chem., 79, 1301-1313 (2005).
[11] S. Langer, E. Ljungstrom, Rates of reaction between the nitrate radical and some aliphatic alcohols, J. Chem. Soc. Faraday Trans., 91, 405-410 (1995). https://doi.org/10.1039/FT9959100405
[12] A. H. Sehon and B. deB. Darwent, The Thermal Decomposition of Mercaptans, J. Am. Chem. Soc., 76, 19, 4806-4810 (1954). https://doi.org/10.1021/ja01648a011
[13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, J. A. Pople, Gaussian, Inc., Pittsburgh PA, (2003).
[14] J. R. Barker et al., MultiWell Programe Suite User Manual., University of Michigan, (2014).
[15] C. Eckart, The penetration of a potential barrier by electrons, Phys. Rev. 35, pp. 1303-1309., (1930), https://doi.org/10.1103/PhysRev.35.1303.
[16] H. Eyring, The activated complex in chemical reactions, J. Chem. Phys., vol. 3, no. 107, (1935) https://doi.org/10.1063/1.1749604.
[17] E. López, J. M. Lucas, J. de Andrés, M. Albertí, J. M. Bofill, A. Aguilar, Dehydrohalogenation and Dehydration Reactions of i-C3H7Br and i- C3H7OH by Sodium Ions Studied by Guided Ion Beam Techniques and Quantum Chemical Methods, J. Phys. Chem. A, 120, 27, 4758-4769, (2016). https://doi.org/10.1021/acs.jpca.5b11869
[18] K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Co., (1979). https://doi.org/10.1007/978-1-4757-0961-2_2
[19] A. L. Ayub, J. M. Roscoe, The reactions of atomic oxygen with 1-propanol and 2-propanol, (1979). https://doi.org/10.1139/v79-207
[20] N. Luo, D. C. Kombo, R. Osman, Theoretical studies of hydrogen abstraction from 2-Propanol by OH radical, J. Phys. Chem. A, 101, 5, 926-936, (1997). https://doi.org/10.1021/jp962021e
[21] N. T. Nghĩa, N. H. Dương, N. N. Tuệ, N. T. M. Huệ, Vận dụng lý thuyết phiếm hàm mật độ nghiên cứu cơ chế phản ứng CH3OH + HS, Tạp chí Khoa học và Công nghệ, 37 (2019) 069-073.
[22] N. H. Thọ, Nghiên cứu lý thuyết sự tạo thành Metan trong phản ứng của gốc Metyl với Propanol-2, Tạp chí Khoa học ĐHQGHN: Khoa học Tự nhiên và Công nghệ, Tập 34, Số 3, 1-3, (2018).
[23] M. Frenkel, K. N. Marsh, R.C. Wilhoit, G.J. Kabo, G.N. Roganov, Thermodynamics of Organic Compounds in the Gas State, Thermodynamics Research Center, College Station, TX, (1994).
[24] M. W. Jr. Chase, NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1-1951 (1998).
[25] NIST Chemistry Webbook (http://webbook.nist.gov/chemistry).
[26] B. Ruscic, Active thermochemical tables: sequential bond dissociation enthalpies of methane, ethane, and methanol and the related thermochemistry, J. Phys. Chem. A 119, 7810-7837 (2015). https://doi.org/10.1021/acs.jpca.5b01346