Synthesize Fe2O3 Polyhedral Applying for Rechargeable Batteries
Main Article Content
Abstract
Polyhedral Fe2O3 materials were synthesized by hydrothermal method. Their structure, size, and morphology were investigated by X-ray diffraction and scanning electron microscopy. The electrochemical characteristics of Fe2O3 electrodes were studied via cyclic voltammetry measurement. The effects of the additives on the electrochemical properties of the electrode were also studied. The results show that the synthesized polyhedral Fe2O3 presented the clear redox peaks. Combined with electrode additive nanocarbon and electrolyte additive K2S, the Fe2O3/C composite electrodes gave higher redox current, larger redox peaks. This demonstrates the important role of additives such as nanocarbon increased the electrical conductivity and the active surface area of the electrode, while K2S enhanced the redox reaction rate of iron, improved the cycleability of iron oxide, and thus increased the discharge capacity of Fe2O3/C electrodes. Polyhedral Fe2O3 synthesized via hydrothermal route has a potential applying as negative electrode in rechargeable batteries.
Keywords
Polyhedral Fe2O3, nanocarbon, Fe2O3/C composite electrode, K2S additive, rechargeable battery
Article Details
References
[1] L. Binder, Experimental survey of rechargeable alkaline zinc electrodes, J. Power Sources. 13 (1984) 9-21. https://doi.org/10.1016/0378-7753(84)80050-6;
[2] A. Mukherjee, I. N. Basumallick, Metallized graphite as an improved cathode material for aluminium/air batteries, J. Power Sources. 45 (1993) 243-246. https://doi.org/10.1016/0378-7753(93)87014-T;
[3] C.A.C. Souza, I.A. Carlos, M. Lopes, G.A. Finazzi, M.R.H. De Almeida, Self-discharge of Fe-Ni alkaline batteries, J. Power Sources. 132 (2004) 288-290. https://doi.org/10.1016/j.jpowsour.2003.12.043;
[4] A. Inoishi, T. Sakai, Y.W. Ju, S. Ida, T. Ishihara, Improved cycle stability of Fe-air solid state oxide rechargeable battery using LaGaO3-based oxide ion conductor, J. Power Sources. 262 (2014) 310-315. https://doi.org/10.1016/j.jpowsour.2014.03.125;
[5] B. Yang, S. Malkhandi, A.K. Manohar, G.K. Surya Prakash, S.R. Narayanan, Organo-sulfur molecules enable iron-based battery electrodes to meet the challenges of large-scale electrical energy storage, Energy Environ. Sci. 7 (2014) 2753. https://doi.org/10.1039/C4EE01454E;
[6] Q. Fang, C.M. Berger, N.H. Menzler, M. Bram, L. Blum, Electrochemical characterization of Fe-air rechargeable oxide battery in planar solid oxide cell stacks, J. Power Sources. 336 (2016) 91-98. https://doi.org/10.1016/j.jpowsour.2016.10.059;
[7] J.O. Gil Posada, P.J. Hall, Post-hoc comparisons among iron electrode formulations based on bismuth, bismuth sulphide, iron sulphide, and potassium sulphide under strong alkaline conditions, J. Power Sources. 268 (2014) 810-815. https://doi.org/10.1016/j.jpowsour.2014.06.126;
[8] A.K. Manohar, C. Yang, S.R. Narayanan, The role of sulfide additives in achieving long cycle life rechargeable iron electrodes in alkaline batteries, J. Electrochem. Soc. 162 (2015) A1864-A1872. https://doi.org/10.1149/2.0741509jes;
[9] S. Malkhandi, B. Yang, A.K. Manohar, G.K.S. Prakash, S.R. Narayanan, Self-assembled monolayers of n -alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes, J. Am. Chem. Soc. 135 (2013) 347-353. https://doi.org/10.1021/ja3095119;
[10] J.O.G. Posada, P.J. Hall, Controlling hydrogen evolution on iron electrodes, Int. J. Hydrogen Energy. 41 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.123;
[11] N. Jayalakshmi, V.S. Muralidharan, Electrochemical behaviour of iron oxide electrodes in alkali solutions, J. Power Sources. 32 (1990) 277-286. https://doi.org/10.1016/0378-7753(90)87021-I;
[12] C. Chakkaravarthy, P. Periasamy, S. Jegannathan, K.I. Vasu, The nickel/iron battery, J. Power Sources. 35 (1991) 21-35. https://doi.org/10.1016/0378-7753(91)80002-F;
[13] L. Carlsson, An iron - air vehicle battery, 2 (1977) 287-296;
[14] S.R. Narayanan, G.K.S. Prakash, A. Manohar, B. Yang, S. Malkhandi, A. Kindler, Materials challenges and technical approaches for realizing inexpensive and robust iron-air batteries for large-scale energy storage, Solid State Ionics. 216 (2012) 105-109. https://doi.org/10.1016/j.ssi.2011.12.002;
[15] A.K. Manohar, S. Malkhandi, B. Yang, C. Yang, G.K. Surya Prakash, S.R. Narayanan, A high-performance rechargeable iron electrode for large-scale battery-based energy storage, J. Electrochem. Soc. 159 (2012) A1209-A1214. https://doi.org/10.1149/2.034208jes;
[16] A.K. Manohar, C. Yang, S. Malkhandi, G.K.S. Prakash, S.R. Narayanan, Enhancing the performance of the rechargeable iron electrode in alkaline batteries with bismuth oxide and iron sulfide additives, J. Electrochem. Soc. 160 (2013) A2078-A2084. https://doi.org/10.1149/2.066311jes;
[17] B.T. Hang, M. Eashira, I. Watanabe, S. Okada, J.I. Yamaki, S.H. Yoon, I. Mochida, The effect of carbon species on the properties of Fe/C composite for metal-air battery anode, J. Power Sources. 143 (2005) 256-264. https://doi.org/10.1016/j.jpowsour.2004.11.044;
[18] B.T. Hang, T. Watanabe, M. Eashira, S. Okada, J.I. Yamaki, S. Hata, S.H. Yoon, I. Mochida, The electrochemical properties of Fe2O3-loaded carbon electrodes for iron-air battery anodes, J. Power Sources. 150 (2005) 261-271. https://doi.org/10.1016/j.jpowsour.2005.02.028;
[19] B.T. Hang, S.-H. Yoon, S. Okada, J. Yamaki, Effect of metal-sulfide additives on electrochemical properties of nano-sized Fe2O3-loaded carbon for Fe/air battery anodes, J. Power Sources. 168 (2007) 522-532. https://doi.org/10.1016/j.jpowsour.2007.02.067;
[20] J. Černý, K. Micka, Voltammetric study of an iron electrode in alkaline electrolytes, J. Power Sources. 25 (1989) 111-122. https://doi.org/10.1016/0378-7753(89)85003-7.
[2] A. Mukherjee, I. N. Basumallick, Metallized graphite as an improved cathode material for aluminium/air batteries, J. Power Sources. 45 (1993) 243-246. https://doi.org/10.1016/0378-7753(93)87014-T;
[3] C.A.C. Souza, I.A. Carlos, M. Lopes, G.A. Finazzi, M.R.H. De Almeida, Self-discharge of Fe-Ni alkaline batteries, J. Power Sources. 132 (2004) 288-290. https://doi.org/10.1016/j.jpowsour.2003.12.043;
[4] A. Inoishi, T. Sakai, Y.W. Ju, S. Ida, T. Ishihara, Improved cycle stability of Fe-air solid state oxide rechargeable battery using LaGaO3-based oxide ion conductor, J. Power Sources. 262 (2014) 310-315. https://doi.org/10.1016/j.jpowsour.2014.03.125;
[5] B. Yang, S. Malkhandi, A.K. Manohar, G.K. Surya Prakash, S.R. Narayanan, Organo-sulfur molecules enable iron-based battery electrodes to meet the challenges of large-scale electrical energy storage, Energy Environ. Sci. 7 (2014) 2753. https://doi.org/10.1039/C4EE01454E;
[6] Q. Fang, C.M. Berger, N.H. Menzler, M. Bram, L. Blum, Electrochemical characterization of Fe-air rechargeable oxide battery in planar solid oxide cell stacks, J. Power Sources. 336 (2016) 91-98. https://doi.org/10.1016/j.jpowsour.2016.10.059;
[7] J.O. Gil Posada, P.J. Hall, Post-hoc comparisons among iron electrode formulations based on bismuth, bismuth sulphide, iron sulphide, and potassium sulphide under strong alkaline conditions, J. Power Sources. 268 (2014) 810-815. https://doi.org/10.1016/j.jpowsour.2014.06.126;
[8] A.K. Manohar, C. Yang, S.R. Narayanan, The role of sulfide additives in achieving long cycle life rechargeable iron electrodes in alkaline batteries, J. Electrochem. Soc. 162 (2015) A1864-A1872. https://doi.org/10.1149/2.0741509jes;
[9] S. Malkhandi, B. Yang, A.K. Manohar, G.K.S. Prakash, S.R. Narayanan, Self-assembled monolayers of n -alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes, J. Am. Chem. Soc. 135 (2013) 347-353. https://doi.org/10.1021/ja3095119;
[10] J.O.G. Posada, P.J. Hall, Controlling hydrogen evolution on iron electrodes, Int. J. Hydrogen Energy. 41 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.123;
[11] N. Jayalakshmi, V.S. Muralidharan, Electrochemical behaviour of iron oxide electrodes in alkali solutions, J. Power Sources. 32 (1990) 277-286. https://doi.org/10.1016/0378-7753(90)87021-I;
[12] C. Chakkaravarthy, P. Periasamy, S. Jegannathan, K.I. Vasu, The nickel/iron battery, J. Power Sources. 35 (1991) 21-35. https://doi.org/10.1016/0378-7753(91)80002-F;
[13] L. Carlsson, An iron - air vehicle battery, 2 (1977) 287-296;
[14] S.R. Narayanan, G.K.S. Prakash, A. Manohar, B. Yang, S. Malkhandi, A. Kindler, Materials challenges and technical approaches for realizing inexpensive and robust iron-air batteries for large-scale energy storage, Solid State Ionics. 216 (2012) 105-109. https://doi.org/10.1016/j.ssi.2011.12.002;
[15] A.K. Manohar, S. Malkhandi, B. Yang, C. Yang, G.K. Surya Prakash, S.R. Narayanan, A high-performance rechargeable iron electrode for large-scale battery-based energy storage, J. Electrochem. Soc. 159 (2012) A1209-A1214. https://doi.org/10.1149/2.034208jes;
[16] A.K. Manohar, C. Yang, S. Malkhandi, G.K.S. Prakash, S.R. Narayanan, Enhancing the performance of the rechargeable iron electrode in alkaline batteries with bismuth oxide and iron sulfide additives, J. Electrochem. Soc. 160 (2013) A2078-A2084. https://doi.org/10.1149/2.066311jes;
[17] B.T. Hang, M. Eashira, I. Watanabe, S. Okada, J.I. Yamaki, S.H. Yoon, I. Mochida, The effect of carbon species on the properties of Fe/C composite for metal-air battery anode, J. Power Sources. 143 (2005) 256-264. https://doi.org/10.1016/j.jpowsour.2004.11.044;
[18] B.T. Hang, T. Watanabe, M. Eashira, S. Okada, J.I. Yamaki, S. Hata, S.H. Yoon, I. Mochida, The electrochemical properties of Fe2O3-loaded carbon electrodes for iron-air battery anodes, J. Power Sources. 150 (2005) 261-271. https://doi.org/10.1016/j.jpowsour.2005.02.028;
[19] B.T. Hang, S.-H. Yoon, S. Okada, J. Yamaki, Effect of metal-sulfide additives on electrochemical properties of nano-sized Fe2O3-loaded carbon for Fe/air battery anodes, J. Power Sources. 168 (2007) 522-532. https://doi.org/10.1016/j.jpowsour.2007.02.067;
[20] J. Černý, K. Micka, Voltammetric study of an iron electrode in alkaline electrolytes, J. Power Sources. 25 (1989) 111-122. https://doi.org/10.1016/0378-7753(89)85003-7.