Enhancement of Magnetoelectric Effect in Compositionally Graded Ferroelectric/Ferromagnetic Pb(1−x)SrxTiO3/CoFe2O4 Nanocomposites
Main Article Content
Abstract
In this study, phase-field model is developed for ferroelectric/ferromagnetic nanocomposites, in which ferroelectric compositions is spatially varied along the thickness of ferroelectric layers. The developed phase field model is applied to investigate the effect of composition gradient on magnetoelectric response of the multilayer nanocomposite. Stripe domain structures are observed in both ferroelectric and ferromagnetic layers, however the sizes of magnetic domains are larger than that of polarization ones. Particularly, the size of polarization domains and geometry of domain walls are altered according to the gradient of ferroelectric compositions. The obtained results suggest that the larger the composition gradient is, the higher the magnetoelectric effect becomes. The enhancement of magnetoelectric effect is attributed to the concentration of energy in ferroelectric layer, which originates from the spatial variation of ferroelectric compositions.
Keywords
Magnetoelectric effect, ferroelectric/ferromagnetic nanocomposite, compositionally graded ferroelectric, phase-field model
Article Details
References
[1] Y. Zhang, Z. Li, C. Y. Deng, J. Ma, Y. H. Lin, C. W. Nan, Demonstration of magnetoelectric read head of multiferroic heterostructures, Appl. Phys. Lett. 92 (2008) 152510. https://doi.org/10.1063/1.2912032
[2] J. Ma, J. Hu, Z. Li, C. W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films, Adv. Mater. 23 (2011) 1062. https://doi.org/10.1002/adma.201003636
[3] N. A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics, Science 309 (2005) 391. https://doi.org/10.1126/science.1113357
[4] Y. Wang, J. Hu, Y. H. Lin, C. W. Nan, Multiferroic magnetoelectric composite nanostructures, NPG Asia Mater. 2 (2010) 61. https://doi.org/10.1038/asiamat.2010.32
[5] W. Eerenstein, N. D. Mathur, J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442 (2006) 759. https://doi.org/10.1038/nature05023
[6] R. Ramesh, N. A. Spaldin, Multiferroics: progress and prospects in thin films, Nat. Mater. 6 (2007) 21. https://doi.org/10.1038/nmat1805
[7] V. Folen, G. Rado, E. Stalder, Anisotropy of the magnetoelectric effect in Cr2O3, Phys. Rev. Lett. 6 (1961) 607. https://doi.org/10.1103/PhysRevLett.6.607
[8] J. Wang, J. Neaton, H. Zheng, V. Nagarajan, S. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. Schlom, U. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science 299 (2003) 1719. https://doi.org/10.1126/science.1080615
[9] M. Popov, Y. Liu, V.L. Safonov, I.V. Zavislyak, V. Moiseienko, P. Zhou, Jiayu Fu, Wei Zhang, Jitao Zhang, Y. Qi, Tianjin Zhang, T. Zhou, P.J. Shah, M.E. McConney, M.R. Page, and G. Srinivasan, Strong converse magnetoelectric effect in a composite of weakly ferromagnetic iron borate and ferroelectric lead zirconate titanate, Phys. Rev. Applied 2020, 14, 034039. https://doi.org/10.1103/PhysRevApplied.14.034039
[10] M. Naveed-Ul-Haq, V. V. Shvartsman, H. Trivedi, S. Salamon, S. Webers, H. Wende, U. Hagemann, J. Schröder, D. C. Lupascu, Strong converse magnetoelectric effect in (Ba,Ca)(Zr,Ti)O3- NiFe2O4 multiferroics: A relationship between phaseconnectivity andinterface coupling. Acta Mater. 2018, 144, 305-313. https://doi.org/10.1016/j.actamat.2017.10.048
[11] A. R. Damodaran, S. Pandya, Y. Qi, S.-L. Hsu, S. Liu, C. Nelson, A. Dasgupta, P. Ercius, C. Ophus, L.R. Dedon, J.C. Agar, H. Lu, J. Zhang, A.M. Minor, A.M. Rappe, L.W. Martin, Large polarization gradients and temperature-stable responses in compositionallygraded ferroelectrics, Nat. Commun. 8 (2017) 14961. https://doi.org/10.1038/ncomms14961
[12] J. C. Agar, A. R. Damodaran, M. B. Okatan, J. Kacher, C. Gammer, R. K. Vasudevan, S. Pandya, L. R. Dedon, R. V. K. Mangalam, G. A. Velarde, S. Jesse, N. Balke, A. M. Minor, S. V. Kalinin & L. W. Martin, Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films, Nat. Mater. 2016, 15, 549-556. https://doi.org/10.1038/nmat4567
[13] Y. Qiu, H. Wu, J. Wang, J. Lou, Z. Zhang, A. Liu, G. Chai, The enhanced piezoelectricity in compositionally graded ferroelectric thin films under electric field: A role of flexoelectric effect, J. Appl. Phys. 2018, 123, 084103. https://doi.org/10.1063/1.5019446
[14] T. Yang, J.-M. Hu, C. Nan, L. Chen, Predicting effective magnetoelectric response in magneticferroelectric composites via phase-field modeling, Appl. Phys. Lett. 104 (2014), 052904. https://doi.org/10.1063/1.4863941
[15] L. Van Lich, T. Shimada, K. Miyata, K. Nagano, J. Wang, T. Kitamura, Colossal magnetoelectric effect in 3-1 multiferroic nanocomposites originating from ultrafine nanodomain structures, Appl. Phys. Lett. 107 (2015) 232904. https://doi.org/10.1063/1.4937578
[16] H.-L. Hu, L.-Q. Chen, Three‐dimensional computer simulation of ferroelectric domain formation, J. Am. Ceram. Soc. 81 (1998) 492-500. https://doi.org/10.1111/j.1151-2916.1998.tb02367.x
[17] L.-Q. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mater. Res. 32 (2002) 113-140. https://doi.org/10.1146/annurev.matsci.32.112001.132041
[18] M.J. Haun, E. Furman, S. Jang, H. McKinstry, L. Cross, Thermodynamic theory of PbTiO3, J. Appl. Phys. 62 (1987) 3331-3338. https://doi.org/10.1063/1.339293
[19] L. Van Lich, V.-H. Dinh, Formation of polarization needle-like domain and its unusual switching in compositionally graded ferroelectric thin films: an improved phase field model, RSC Adv. 9 (2019) 7575-7586. https://doi.org/10.1039/C8RA10614B
[20] H. Zheng, J. Wang, S. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. Shinde, S. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Multiferroic BaTiO3-CoFe2O4 nanostructures, Science 303 (2004) 661-663. https://doi.org/10.1126/science.1094207
[21] C. Schmitz-Antoniak, D. Schmitz, P. Borisov, F.M. De Groot, S. Stienen, A. Warland, B. Krumme, R. Feyerherm, E. Dudzik, W. Kleemann, H. Wende, Electric in-plane polarization in multiferroic CoFe2O4/BaTiO3 nanocomposite tuned by magnetic fields, Nat. Commun. 4 (2013) 2051. https://doi.org/10.1038/ncomms3051
[22] Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. TrolierMcKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, Phase transitions and domain structures in strained pseudocubic (100) SrTiO3 thin films, Phys. Rev. B 73 (2006) 184112. https://doi.org/10.1103/PhysRevB.73.184112
[23] S. Matzen, O. Nesterov, G. Rispens, J.A. Heuver, M. Biegalski, H.M. Christen, B. Noheda, Super switching and control of in-plane ferroelectric nanodomains in strained thin films, Nat. Commun. 5 (2014) 4415. https://doi.org/10.1038/ncomms5415
[24] Y. Shirahata, R. Shiina, D.L. Gonzalez, K.J.A. Franke, E. Wada, M. Itoh, N.A. Pertsev, S. van Dijken, T. Taniyama, Electric-field switching of perpendicularly magnetized multilayers, NPG Asia Mater. 7 (2015) e198. https://doi.org/10.1038/am.2015.72
[25] I.E. Dzyaloshinskii, On the magneto-electrical effects in antiferromagnets, Sov. Phys. JETP 10 (1960) 628-829.
[26] D. Astrov, The magnetoelectric effect in antiferromagnetics, Sov. Phys. JETP 11 (1960) 708.
[27] Li, Y.; Wang, Z.; Yao, J.; Yang, T.; Wang, Z.; Hu, J.-M.; Chen, C.; Sun, R.; Tian, Z.; Li, J.; et al. Magnetoelectric quasi-(0-3) nanocomposite heterostructures. Nat. Commun. 2015, 6, 6680. https://doi.org/10.1038/ncomms7680
[28] M.-T. Le, L. V. Lich, T. Q. Bui, T.-G. Nguyen, V.-H. Dinh, Tuning magnetoelectric effect in Pb(1−x)SrxTiO3/CoFe2O4 multiferroic nanocomposites by varying Sr content, J. Phys. Chem. Solids 2020, 138, 109293. https://doi.org/10.1016/j.jpcs.2019.109293
[2] J. Ma, J. Hu, Z. Li, C. W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films, Adv. Mater. 23 (2011) 1062. https://doi.org/10.1002/adma.201003636
[3] N. A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics, Science 309 (2005) 391. https://doi.org/10.1126/science.1113357
[4] Y. Wang, J. Hu, Y. H. Lin, C. W. Nan, Multiferroic magnetoelectric composite nanostructures, NPG Asia Mater. 2 (2010) 61. https://doi.org/10.1038/asiamat.2010.32
[5] W. Eerenstein, N. D. Mathur, J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442 (2006) 759. https://doi.org/10.1038/nature05023
[6] R. Ramesh, N. A. Spaldin, Multiferroics: progress and prospects in thin films, Nat. Mater. 6 (2007) 21. https://doi.org/10.1038/nmat1805
[7] V. Folen, G. Rado, E. Stalder, Anisotropy of the magnetoelectric effect in Cr2O3, Phys. Rev. Lett. 6 (1961) 607. https://doi.org/10.1103/PhysRevLett.6.607
[8] J. Wang, J. Neaton, H. Zheng, V. Nagarajan, S. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. Schlom, U. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures, Science 299 (2003) 1719. https://doi.org/10.1126/science.1080615
[9] M. Popov, Y. Liu, V.L. Safonov, I.V. Zavislyak, V. Moiseienko, P. Zhou, Jiayu Fu, Wei Zhang, Jitao Zhang, Y. Qi, Tianjin Zhang, T. Zhou, P.J. Shah, M.E. McConney, M.R. Page, and G. Srinivasan, Strong converse magnetoelectric effect in a composite of weakly ferromagnetic iron borate and ferroelectric lead zirconate titanate, Phys. Rev. Applied 2020, 14, 034039. https://doi.org/10.1103/PhysRevApplied.14.034039
[10] M. Naveed-Ul-Haq, V. V. Shvartsman, H. Trivedi, S. Salamon, S. Webers, H. Wende, U. Hagemann, J. Schröder, D. C. Lupascu, Strong converse magnetoelectric effect in (Ba,Ca)(Zr,Ti)O3- NiFe2O4 multiferroics: A relationship between phaseconnectivity andinterface coupling. Acta Mater. 2018, 144, 305-313. https://doi.org/10.1016/j.actamat.2017.10.048
[11] A. R. Damodaran, S. Pandya, Y. Qi, S.-L. Hsu, S. Liu, C. Nelson, A. Dasgupta, P. Ercius, C. Ophus, L.R. Dedon, J.C. Agar, H. Lu, J. Zhang, A.M. Minor, A.M. Rappe, L.W. Martin, Large polarization gradients and temperature-stable responses in compositionallygraded ferroelectrics, Nat. Commun. 8 (2017) 14961. https://doi.org/10.1038/ncomms14961
[12] J. C. Agar, A. R. Damodaran, M. B. Okatan, J. Kacher, C. Gammer, R. K. Vasudevan, S. Pandya, L. R. Dedon, R. V. K. Mangalam, G. A. Velarde, S. Jesse, N. Balke, A. M. Minor, S. V. Kalinin & L. W. Martin, Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films, Nat. Mater. 2016, 15, 549-556. https://doi.org/10.1038/nmat4567
[13] Y. Qiu, H. Wu, J. Wang, J. Lou, Z. Zhang, A. Liu, G. Chai, The enhanced piezoelectricity in compositionally graded ferroelectric thin films under electric field: A role of flexoelectric effect, J. Appl. Phys. 2018, 123, 084103. https://doi.org/10.1063/1.5019446
[14] T. Yang, J.-M. Hu, C. Nan, L. Chen, Predicting effective magnetoelectric response in magneticferroelectric composites via phase-field modeling, Appl. Phys. Lett. 104 (2014), 052904. https://doi.org/10.1063/1.4863941
[15] L. Van Lich, T. Shimada, K. Miyata, K. Nagano, J. Wang, T. Kitamura, Colossal magnetoelectric effect in 3-1 multiferroic nanocomposites originating from ultrafine nanodomain structures, Appl. Phys. Lett. 107 (2015) 232904. https://doi.org/10.1063/1.4937578
[16] H.-L. Hu, L.-Q. Chen, Three‐dimensional computer simulation of ferroelectric domain formation, J. Am. Ceram. Soc. 81 (1998) 492-500. https://doi.org/10.1111/j.1151-2916.1998.tb02367.x
[17] L.-Q. Chen, Phase-field models for microstructure evolution, Annu. Rev. Mater. Res. 32 (2002) 113-140. https://doi.org/10.1146/annurev.matsci.32.112001.132041
[18] M.J. Haun, E. Furman, S. Jang, H. McKinstry, L. Cross, Thermodynamic theory of PbTiO3, J. Appl. Phys. 62 (1987) 3331-3338. https://doi.org/10.1063/1.339293
[19] L. Van Lich, V.-H. Dinh, Formation of polarization needle-like domain and its unusual switching in compositionally graded ferroelectric thin films: an improved phase field model, RSC Adv. 9 (2019) 7575-7586. https://doi.org/10.1039/C8RA10614B
[20] H. Zheng, J. Wang, S. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. Shinde, S. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Multiferroic BaTiO3-CoFe2O4 nanostructures, Science 303 (2004) 661-663. https://doi.org/10.1126/science.1094207
[21] C. Schmitz-Antoniak, D. Schmitz, P. Borisov, F.M. De Groot, S. Stienen, A. Warland, B. Krumme, R. Feyerherm, E. Dudzik, W. Kleemann, H. Wende, Electric in-plane polarization in multiferroic CoFe2O4/BaTiO3 nanocomposite tuned by magnetic fields, Nat. Commun. 4 (2013) 2051. https://doi.org/10.1038/ncomms3051
[22] Y. L. Li, S. Choudhury, J. H. Haeni, M. D. Biegalski, A. Vasudevarao, A. Sharan, H. Z. Ma, J. Levy, V. Gopalan, S. TrolierMcKinstry, D. G. Schlom, Q. X. Jia, and L. Q. Chen, Phase transitions and domain structures in strained pseudocubic (100) SrTiO3 thin films, Phys. Rev. B 73 (2006) 184112. https://doi.org/10.1103/PhysRevB.73.184112
[23] S. Matzen, O. Nesterov, G. Rispens, J.A. Heuver, M. Biegalski, H.M. Christen, B. Noheda, Super switching and control of in-plane ferroelectric nanodomains in strained thin films, Nat. Commun. 5 (2014) 4415. https://doi.org/10.1038/ncomms5415
[24] Y. Shirahata, R. Shiina, D.L. Gonzalez, K.J.A. Franke, E. Wada, M. Itoh, N.A. Pertsev, S. van Dijken, T. Taniyama, Electric-field switching of perpendicularly magnetized multilayers, NPG Asia Mater. 7 (2015) e198. https://doi.org/10.1038/am.2015.72
[25] I.E. Dzyaloshinskii, On the magneto-electrical effects in antiferromagnets, Sov. Phys. JETP 10 (1960) 628-829.
[26] D. Astrov, The magnetoelectric effect in antiferromagnetics, Sov. Phys. JETP 11 (1960) 708.
[27] Li, Y.; Wang, Z.; Yao, J.; Yang, T.; Wang, Z.; Hu, J.-M.; Chen, C.; Sun, R.; Tian, Z.; Li, J.; et al. Magnetoelectric quasi-(0-3) nanocomposite heterostructures. Nat. Commun. 2015, 6, 6680. https://doi.org/10.1038/ncomms7680
[28] M.-T. Le, L. V. Lich, T. Q. Bui, T.-G. Nguyen, V.-H. Dinh, Tuning magnetoelectric effect in Pb(1−x)SrxTiO3/CoFe2O4 multiferroic nanocomposites by varying Sr content, J. Phys. Chem. Solids 2020, 138, 109293. https://doi.org/10.1016/j.jpcs.2019.109293