Ferrite (Fe3O4) Nanoparticle in Soil Stimulates the Plant Growth in Peas and Bok Choy

Minh Hieu Dang1, , Thi Hoa Nguyen1, Thi Mai Oanh Ho1, Nhu Duy Tran1
1 Hanoi University of Science and Technology, Hanoi, Vietnam

Main Article Content

Abstract

Iron oxide nanoparticles have been known to be non-toxic and are among the most widely used nanomaterials in life, from the medical, agricultural to environmental fields. However, so far, the understanding of the interaction of nanoparticles, in general, and iron oxide nanoparticles, in particular, with the environment and the flora and fauna ecosystems is still limited. This study evaluated the effects of ferrite (Fe3O4) nanoparticles in soil on the growth of peas (Pisum sativum) and bok choy (Brassica rapa). The study showed that the nanoparticle concentration of 25 mg/kg of soil had the best positive effect on peas growth in terms of the main root elongation and root water retention. At a concentration of 25 mg/kg of soil, iron oxide nanoparticles did not affect the dry biomass growth of root and plant in peas and bok choy, respectively, even in the presence of potassium sulfate in soil. This suggests that the effect of ferric oxide nanoparticles could be more dominant than that of potassium sulfate fertilizer while maintaining constant biomass with increasing water uptake. Further studies at the cellular and tissue levels are needed to better understand this issue.

Article Details

References

[1] S. C. Baetke, T. Lammers, and F. Kiessling, Applications of nanoparticles for diagnosis and therapy of cancer, Br. J. Radiol., vol. 88, Art. no. 20150207, 2015 https://doi.org/10.1259/bjr.20150207.
[2] E. A. Kuchma, P. V. Zolotukhin, A. A. Belanova, M. A. Soldatov, T. A. Lastovina, S. P. Kubrin, A. V. Nikolsky, L. I. Mirmikova, and A. V. Soldatov, Low toxic maghemite nanoparticles for theranostic applications, Int. J. Nanomed., vol. 12, pp. 6365-6371, 2017 https://doi.org/10.2147/IJN.S140368.
[3] C. M. Park, K. H. Chu, J. Heo, N. Her, M. Jang, A. Son, and Y. Yoon, Environmental behavior of engineered nanomaterials in porous media: a review, J. Hazard. Mater., vol. 309, pp. 133-150, 2016 https://doi.org/10.1016/j.jhazmat.2016.02.006.
[4] T. D. Tran, N. T. Dao, R. Sasaki, M. B. Tu, G. M. H. Dang, N. V. Nguyen, H. M. Dang, C. H. Vo, Y. Inagaki, and Y. Sakakibara, Accelerated remediation of organochlorine pesticide-contaminated soils with Phyto-Fenton process: A field study, Environ Geochem Health., vol. 42, pp. 3597-3608, 2020 https://doi.org/10.1007/s10653-020-00588-1.
[5] H-X. Ren, L. Liu, C. Liu, S-Y. He, J. Huang, J-L. Li, Y. Zhang, X-J. Huang, and N. Gu, Physiological investigation of magnetic iron oxide nanoparticles towards chinese mung bean, J Biomed Nanotechnol., vol. 7, pp. 677-684, 2011 https://doi.org/10.1166/jbn.2011.1338.
[6] Z. Asadi-Kavan, R. A. Khavari-Nejad, A. Iranbakhsh, and F. Najafi, Cooperative effects of iron oxide nanoparticle (α-Fe2O3) and citrate on germination and oxidative system of evening primrose (Oenthera biennis L.), J. Plant Interact., vol. 15, no. 1, pp. 66-179. 2020 https://doi.org/10.1080/17429145.2020.1774671.
[7] S. Bombin, M. LeFebvre, J. Sherwood, Y. Xu, Y. Bao, and K. M. Ramonell, Devlopmental and reproductive effects of iron oxide nanoparticles in arabidopsis thaliana, Int. J. Mol. Sci., vol. 16: pp. 24174-24193, 2015. https://doi.org/10.3390/ijms161024174.
[8] S. Palchoudhury, K. L. Jungjohann, L. Weerasena, A. Arabshahi, U. Gharge, A. Albattah, J. Miller, K. Patel, and R. A. Holler, Enhanced legum root growth with presoaking in α-Fe2O3 nanoparticle fertilizer, RSC Adv., vol. 8, pp. 24075-24083. 2018 https://doi.org/10.1039/c8ra04680h.
[9] I. Kokina, I. Plaksenkova, M. Jermalonoka, and A. Petrova, Impact of iron oxide nanoparticles on yellow medick (Medicago falcata L.) plants, J. Plant Interact., vol. 15, no. 1, pp. 1-7. 2020 https://doi.org/10.1080/17429145.2019.1708489.
[10] R. Sheykhbaglou, M. Sedghi, and B. FathiAchachlouie, The effect of ferrous nano-oxide particles on physiological traits and nitritional compounds of soybean (Glycine max L.) seed. Anais da Academia Brasileira de Ciências, vol. 90, no. 1, pp. 485-494. 2018 https://doi.org/10.1590/0001-3765201820160251.
[11] M. Rui, C. Ma, Y. Hao, J. Gou, Y. Rui, X. Tang, Q. Zhao, X. Fan, Z. Zhang, T. Hou, and S. Zhu, Iron oxide nanoparticles as a potential iron fertilizer for peanut (arachis hypogaea), Front. Plant Sci, vol. 7, art. no. 815. 2016 https://doi.org/10.3389/fpls.2016.00815.
[12] M. Rizwan, S. Ali, B. Ali, M. Adrees, A. Arshad, A. Hussain, M. Z. ur Rehman, and A. A. Waris, Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat, Chemosphere, vol. 214, pp. 269-277. 2019 https://doi.org/10.1016/j.chemosphere.2018.09.120.