Theoretical Study of the C6H5NH2 + CH3 Reaction by the Density Functional Theory DFT/M06-2X/6-311++G(3df,2p)
Main Article Content
Abstract
The mechanism of the reaction between Aniline compound (C6H5NH2) and Methyl radical (CH3•) has been studied by using the density functional theory DFT/M06-2X in conjunction with the 6-311++G(3df,2p) basis set for both optimization and single-point energy calculations. The calculated results indicate that the mechanism of the CH3• + C6H5NH2 reaction can occur in two different directions, namely, H-atom abstraction and addition. As a result, 13 various products have been created from this reaction; in which, P1 (C6H5NH + CH4) is the most thermodynamically stable product and the reaction path leading to this product is also the most energetically and kinetically favorable channel. The calculated thermodynamic properties for all reaction channels in the C6H5NH2 + CH3 system are in good agreement with the literature values derived from the Active Thermochemical Tables. The T1 diagnostics and the spin contamination effect of all species involved have insignificant multireference character and can be ignored.
Keywords
DFT, CH3, C6H5NH2, M06-2X, 6-311 (3df,2p)
Article Details
References
[1] G. Palmiotto, G. Pieraccini, G. Moneti, P. Dolara, Determination of the levels of aromatic amines in indoor and outdoor air in Italy, Chemosphere vol. 43, no. 3, pp. 355−361, Apr. 2001 https://doi.org/10.1016/S0045-6535(00)00109-0.
[2] M. F. Khan, X. Wu, B. S. Kaphalia, P. J. Boor, G. A. S. Ansari, Acute hematopoietic toxicity of aniline in rats, Toxicol. Lett., vol. 92, no. 1, pp. 31−37, Jun. 1997 https://doi.org/10.1016/S0378-4274(97)00032-5.
[3] F. Shahrezaei, Y. Mansouri, A. A. L. Zinatizadeh, A. Akhbari, Photocatalytic degradation of aniline using TiO2 nanoparticles in a vertical circulating photocatalytic reactor, Int. J. Photoenergy, vol. 2012, pp. 1−8, Sep. 2012 https://doi.org/10.1155/2012/430638.
[4] J. Wang, H. Ma, P.J. Boor, V.M.S. Ramanujam, G.A.S. Ansaria, M.F. Khan, Up-regulation of heme oxygenase1 in rat spleen after aniline exposure. Free Radical Biology and Medicine, vol. 48, no. 4, pp. 513-518, 2010 https://doi.org/10.1016/j.freeradbiomed.2009.11.027.
[5] H. B. Xie, F. Ma, Y. Wang, N. He, Q. Yu, J. Chen, Quantum chemical study on Cl-initiated atmospheric degradation of monoethanolamine, Environ. Sci. Technol., vol. 49, no. 22, pp. 13246−13255, Oct. 2015 https://doi.org/10.1021/acs.est.5b03324.
[6] G. da Silva, Formation of nitrosamines and alkyldiazohydroxides in the gas phase: the CH3NH + NO reaction revisited, Environ. Sci. Technol., vol. 47, no. 14, pp. 7766−7772, Jun. 2013 https://doi.org/10.1021/es401591n.
[7] N. Dai, A. D. Shah, L. Hu, M. J. Plewa, B. McKague, W. A. Mitch, Measurement of nitrosamine and nitramine formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration, Environ. Sci. Technol., vol. 46, no. 17, pp. 9793−9801, Jul. 2012 https://doi.org/10.1021/es301867b.
[8] A. Mellouki, G. Le Bras, H. Sidebottom, Kinetics and mechanisms of the oxidation of oxygenated organic compounds in the gas phase, Chem. Rev., vol. 103, no. 12, pp. 5077–5096, Oct. 2003 https://doi.org/10.1021/cr020526x.
[9] R. Atkinson, Gas-phase tropospheric chemistry of organic compounds: a review. Atmos. Environ., vol. 41, pp. 200–240, 2007 https://doi.org/10.1016/j.atmosenv.2007.10.068.
[10] Y. Zhao, D. G. Truhlar, Density functional for spectroscopy: no long-range self-interaction error, good performance for rydberg and charge-transfer states, and better performance on average than B3LYP for ground states, J. Phys. Chem. A, vol. 110, no. 49, pp. 13126-13130, Nov. 2006 https://doi.org/10.1021/jp066479k.
[11] G. E. Scuseria, C. L. Janssen, H. F. Schaefer III, An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations, J. Chem. Phys., vol. 89, pp. 7382-7387, Aug. 1998 https://doi.org/10.1063/1.455269.
[12] C. Gonzalez, H. B. Schlegel, An improved algorithm for reaction path following. J. Chem. Phys., vol. 90, no. 14, pp. 2154-2161, Feb. 1989 https://doi.org/10.1063/1.456010.
[13] I. M. Alecu, J. Zheng, Y. Zhao, D. G. Truhlar, Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries, J. Chem. Theor. Comput., vol. 6, pp. 2872-2887, Aug. 2010.
[14] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, Petersson, et al., Gaussian 16; Gaussian, Inc.: Wallingford CT, USA, 2016. Available: https://gaussian.com/gaussian16.
[15] T. A. Klimova, V. V. Bochkarev, L. S. Soroka, Modeling of the aniline with nitrobenzene reaction by PM6 method, Procedia Chemistry, vol. 10, pp. 58–63, 2014, https://doi.org/10.1016/j.proche.2014.10.0
[2] M. F. Khan, X. Wu, B. S. Kaphalia, P. J. Boor, G. A. S. Ansari, Acute hematopoietic toxicity of aniline in rats, Toxicol. Lett., vol. 92, no. 1, pp. 31−37, Jun. 1997 https://doi.org/10.1016/S0378-4274(97)00032-5.
[3] F. Shahrezaei, Y. Mansouri, A. A. L. Zinatizadeh, A. Akhbari, Photocatalytic degradation of aniline using TiO2 nanoparticles in a vertical circulating photocatalytic reactor, Int. J. Photoenergy, vol. 2012, pp. 1−8, Sep. 2012 https://doi.org/10.1155/2012/430638.
[4] J. Wang, H. Ma, P.J. Boor, V.M.S. Ramanujam, G.A.S. Ansaria, M.F. Khan, Up-regulation of heme oxygenase1 in rat spleen after aniline exposure. Free Radical Biology and Medicine, vol. 48, no. 4, pp. 513-518, 2010 https://doi.org/10.1016/j.freeradbiomed.2009.11.027.
[5] H. B. Xie, F. Ma, Y. Wang, N. He, Q. Yu, J. Chen, Quantum chemical study on Cl-initiated atmospheric degradation of monoethanolamine, Environ. Sci. Technol., vol. 49, no. 22, pp. 13246−13255, Oct. 2015 https://doi.org/10.1021/acs.est.5b03324.
[6] G. da Silva, Formation of nitrosamines and alkyldiazohydroxides in the gas phase: the CH3NH + NO reaction revisited, Environ. Sci. Technol., vol. 47, no. 14, pp. 7766−7772, Jun. 2013 https://doi.org/10.1021/es401591n.
[7] N. Dai, A. D. Shah, L. Hu, M. J. Plewa, B. McKague, W. A. Mitch, Measurement of nitrosamine and nitramine formation from NOx reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration, Environ. Sci. Technol., vol. 46, no. 17, pp. 9793−9801, Jul. 2012 https://doi.org/10.1021/es301867b.
[8] A. Mellouki, G. Le Bras, H. Sidebottom, Kinetics and mechanisms of the oxidation of oxygenated organic compounds in the gas phase, Chem. Rev., vol. 103, no. 12, pp. 5077–5096, Oct. 2003 https://doi.org/10.1021/cr020526x.
[9] R. Atkinson, Gas-phase tropospheric chemistry of organic compounds: a review. Atmos. Environ., vol. 41, pp. 200–240, 2007 https://doi.org/10.1016/j.atmosenv.2007.10.068.
[10] Y. Zhao, D. G. Truhlar, Density functional for spectroscopy: no long-range self-interaction error, good performance for rydberg and charge-transfer states, and better performance on average than B3LYP for ground states, J. Phys. Chem. A, vol. 110, no. 49, pp. 13126-13130, Nov. 2006 https://doi.org/10.1021/jp066479k.
[11] G. E. Scuseria, C. L. Janssen, H. F. Schaefer III, An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations, J. Chem. Phys., vol. 89, pp. 7382-7387, Aug. 1998 https://doi.org/10.1063/1.455269.
[12] C. Gonzalez, H. B. Schlegel, An improved algorithm for reaction path following. J. Chem. Phys., vol. 90, no. 14, pp. 2154-2161, Feb. 1989 https://doi.org/10.1063/1.456010.
[13] I. M. Alecu, J. Zheng, Y. Zhao, D. G. Truhlar, Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries, J. Chem. Theor. Comput., vol. 6, pp. 2872-2887, Aug. 2010.
[14] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, Petersson, et al., Gaussian 16; Gaussian, Inc.: Wallingford CT, USA, 2016. Available: https://gaussian.com/gaussian16.
[15] T. A. Klimova, V. V. Bochkarev, L. S. Soroka, Modeling of the aniline with nitrobenzene reaction by PM6 method, Procedia Chemistry, vol. 10, pp. 58–63, 2014, https://doi.org/10.1016/j.proche.2014.10.0