Enhanced Energy Storage Density and Efficiency of Lead-Free Bi0.5Na0.5TiO3-SrTiO3 Ferroelectric Ceramics by BaZrO3 Doping

Thi Hinh Dinh1,2, , Vu Diem Ngoc Tran3, Thi Thao Nguyen3, Vinh Le Van1,2, Ky Nam Pham4
1 Phenikaa University, Hanoi, Vietnam
2 Phenikaa Research and Technology Institute, Hanoi, Vietnam
3 Hanoi University of Science and Technology, Hanoi, Vietnam
4 Viettel Aerospace Institute - Viettel Group, Hanoi, Vietnam

Main Article Content

Abstract

To improve the energy storage density and efficiency of lead-free ferroelectric ceramics, the ternary Bi0.5Na0.5TiO3-SrTiO3-BaZrO3 ferroelectric system was studied. All ceramics were fabricated by a conventional solid-state reaction method and sintered at 1150 °C for 2 h. The crystal structure, electric-field-induced polarization, energy storage density, and efficiency properties of all samples were analyzed. The X-ray diffraction patterns show that the addition of BaZrO3 in the Bi0.5Na0.5TiO3-SrTiO3 system influences a phase transition from tetragonal to a pseudocubic structure. The electric field-induced-polarization loops confirm the phase transition from ferroelectric to relaxor in Bi0.5Na0.5TiO3-SrTiO3-BaZrO3 ceramics, which increases the energy storage density and efficiency of the samples. The energy storage density and efficiency of pure Bi0.5Na0.5TiO3-SrTiO3 (x = 0) were ~0.2 J/cm³ and ~29%. The addition of 1% BaZrO3 increases the energy storage density and efficiency of the sample to ~0.4 J/cm³ and ~74%. The further increase in the BaZrO3 content to x = 0.03 shows the energy storage density of ~0.38 J/cm³ with an energy storage efficiency of ~97%. The results indicate promising lead-free ferroelectric ceramic candidates for energy storage capacitor applications.

Article Details

References

[1] H. Palneedi, M. Peddigari, G.T. Hwang, D.Y. Jeong, J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook, Adv. Funct. Mater., vol. 28, no. 42, pp.1803665, Oct. 2018. https://doi.org/10.1002/adfm.201803665
[2] Z. Yang, H. Du, L. Jin, D. Poelman, High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges, J. Mater. Chem. A, vol. 9, pp.18026-18085, Jul. 2021. https://doi.org/10.1039/D1TA04504K
[3] G.A. Smolenskii, V.A. Isupov, A.I. Agranivyskaya, N.N. Krainik, New ferroelectrics of complex composition. IV, Sov. Phys. Sol. St.Vol. 2, pp. 2651-2654, 1961.
[4] V.A. Isupov, Ferroelectric Na0.5Bi0.5TiO3 and K0.5Bi0.5TiO3 perovskites and their solid solutions, Ferroelectrics, vol. 315, no. 1, pp. 123-147, Dec. 2005. https://doi.org/10.1080/001501990910276
[5] I.P. Pronin, P.P. Syrnikov, V.A. Isupov, V.M. Egorov, N.V. Zaitseva, Peculiarities of phase transitions in sodium-bismuth titanate, Ferroelectrics, vol. 25, no. 1, pp. 395-397, 1980. https://doi.org/10.1080/00150198008207029
[6] L.E. Cross, Relaxor ferroelectrics, Ferroelectrics, vol. 76, no. 1, pp. 241-267, 1987. https://doi.org/10.1080/00150198708016945
[7] H. Nagata, N. Koizumi, T. Takenaka, Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-BiFeO3 system, Key Eng. Mater., vol. 169, pp. 37-40, Jan. 1999. https://doi.org/10.4028/www.scientific.net/KEM.169-170.37
[8] S. Zhang, B. Malic, J.F. Li, J. Rödel, Lead-free ferroelectric materials: Prospective applications, J. Mater. Res., vol. 36, no. 5, pp. 985-995, Mar. 2021. https://doi.org/10.1557/s43578-021-00180-y
[9] Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, T. Takenaka, Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3-SrTiO3 ferroelectric ceramics, Appl. Phys. Lett., vol. 92, no. 26, pp. 262904 (3 pages), Jun. 2008. https://doi.org/10.1063/1.2955533
[10] M. Acosta, L.A. Schmitt, L.M. Luna, M.C. Scherrer, M. Brilz, K.G. Webber, M. Deluca, H.J. Kleebe, J. Rödel, M. Donner, Core-shell lead-free piezoelectric ceramics: current status and advanced characterization of the Bi1/2Na1/2TiO3-SrTiO3 system, J. Am. Ceram. Soc., vol 98, no. 11, pp. 3405-3422, Nov. 2015. https://doi.org/10.1111/jace.13853
[11] W.D. Callister Jr, D. G. Rethwisch, Materials Science and Engineering: An Introduction, 9th Edition, Wiley, 2014, pp. 476.
[12] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A, vol 32, pp. 751-767, 1976. https://doi.org/10.1107/S0567739476001551