Assessment of PAHs Emissions from Domestic Cooking Fuels on Indoor Air in Nigeria
Main Article Content
Abstract
Due to Nigeria's high electricity cost, biomass fuels (gas and kerosene) are thought to be more cost-effective, less stressful, and commonly utilized in cooking in urban areas. Thus, this results in higher polycyclic-aromatic-hydrocarbons (PAHs) concentrations in indoor areas, posing a health risk. This study investigated the contribution of gas and kerosene stoves to the indoor level of PAHs in two selected household kitchens. Furthermore, their concentrations were calculated to investigate PAH dispersion patterns and evaluate the carcinogenic risk it poses to health. The gas and kerosene stoves used were placed in different rooms of equal sizes and allowed to burn for 3 hours daily, assuming average cooking time per day. Passive sampling with polyurethane foam (PUF) disks was used. The disks were removed after 3, 7 and 14 days for Gas Chromatography-Mass Spectrometer (GC-MS) analysis to determine the PUF disks' PAHs concentration. The study results revealed that the indoor PAHs' average concentration after 3, 7 and 14 days is 0.28, 0.44 and 0.65 μg/m3 for gas, respectively, and the corresponding average concentration for kerosene is 0.72, 0.94 and 1.33 μg/m3, respectively. Although the gas stove showed a better performance than the kerosene, good ventilation in the kitchen will assist in reducing the PAH concentration from both gas and kerosene stove cooking in the kitchen for better health.
Keywords
Biomass fuels, Indoor air pollution, PAHs, Health effect, Passive sampling
Article Details
References
[1]. S. Christie, D. Raper, D. S. Lee, P.I. Williams, L. Rye, S. Blakey, C.W. Wilson, P. Lobo, D. Hagen, P.D. Whitefield, Polycyclic aromatic hydrocarbon emissions from the combustion of alternative fuels in a gas turbine engine, Environmental Science and Technology, vol. 46, no. 11, June 2012, pp. 6393-6400. https://doi.org/10.1021/es300301k
[2]. N. D. Dat, M. B. Chang, Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies, Science of the Total Environment, vol. 609, July 2017, pp. 682-693. https://doi.org/10.1016/j.scitotenv.2017.07.204.
[3]. G. Shen, W. Preston, S. M. Ebersviller, C. Williams, J. W. Faircloth, J. J. Jetter, M. D. Hays, Polycyclic aromatic hydrocarbons in fine particulate matter emitted from burning kerosene, liquid petroleum gas, and wood fuels in household cookstoves, Energy and Fuels, vol. 31, no. 3, 2017, pp. 3081-3090. https://doi.org/10.1021/acs.energyfuels.6b02641.
[4]. P. K. Verma, D. Sah, J. Dubey, K. M. Kumari, A. Lakhani, Mutagenic and cancer risk estimation of particulate bound polycyclic aromatic hydrocarbons from the emission of different biomass fuels, Chemical Research in Toxicology, vol. 34, no. 3, Mar. 2021, pp. 743-753. https://doi.org/10.1021/acs.chemrestox.0c00378.
[5]. O. Oluwole, G. R. Ana, G. O. Arinola, T. Wiskel, A. G. Falusi, D. Huo, O. I. Olopade, C. O. Olopade. Effect of stove intervention on household air pollution and the respiratory health of women and children in rural Nigeria, Air Quality, Atmosphere and Health, vol. 6, Mar. 2013, pp. 553-561. https://doi.org/10.1007/s11869-013-0196-9.
[6] N. B. Omodara, A. O. Obijole, E. A. Adekunbi, H. O. Oloyede, A. Oyebade, Investigation of polycyclic aromatic hydrocarbon concentration in roasted plantain, roasted meat and smoked fish in Ondo, Nigeria, International Journal of Innovative Environmental Studies Research, vol. 3, no. 1, Mar. 2015, pp. 27-31.
[7]. C. M. A. Iwegbue, E. O. C. Iteku-Atata, E. W. Odali, F. E. Egobueze, G. O. Tesi, G. E. Nwajei, B. S. Martincigh, Distribution, sources and health risks of polycyclic aromatic hydrocarbons (PAHs) in household dusts from rural, semi-urban and urban areas in the Niger Delta, Nigeria, Exposure and Health, vol. 11, May 2019, pp. 209-225. https://doi.org/10.1007/s12403-018-0276-z.
[8]. W. Du, X. Yun, Y. Chen, Q. Zhong, W. Wang, L. Wang, M. Qi, G. Shen, S. Tao, PAHs emissions from residential biomass burning in real-world cooking stoves in rural China, Environmental Pollution, vol. 267, Dec. 2020, pp. 11592 https://doi.org/10.1016/j.envpol.2020.115592.
[9]. H. L. Wang, Y. H. Zhuang, Z. P. Hao, M. Q. Cao, J. X. Zhong, X. K. Wang, T. K. O. Nguyen, Polycyclic aromatic hydrocarbons from rural household biomass burning in a typical Chinese village, Science in China, Series D: Earth Sciences, vol. 51, July 2008, pp. 1013-1020 https://doi.org/10.1007/s11430-008-0064-x.
[10]. T. O. Etchie, A. T. Etchie, P. Oluwasanya, H. Shen, Development of national health-based target for regulating airborne polycyclic aromatic hydrocarbons exposure in Nigeria, in: Journal of Physics: Conference Series, Institute of Physics Publishing, May 2019, pp. 1-8. https://doi.org/10.1088/1742-6596/1299/1/012088.
[11]. K .P. Yu, K. R. Yang, Y. C. Chen, J. Y. Gong, Y. P. Chen, H. C. Shih, S. C. C. Lung, Indoor air pollution from gas cooking in five Taiwanese families, Building and Environment, vol. 93, no. 2, 2015, pg. 258-266. https://doi.org/10.1016/j.buildenv.2015.06.024.
[12]. S. Feng, X. Shen, X. Hao, X. Cao, X. Li, X. Yao, Y. Shi, T. Lv, Z. Yao. Polycyclic and nitro-polycyclic aromatic hydrocarbon pollution characteristics and carcinogenic risk assessment of indoor kitchen air during cooking periods in rural households in North China, Environmental Science and Pollution Research., vol. 28, no. 9, Mar. 2021, pp. 11498-11508. https://doi.org/10.1007/s11356-020-11316-8.
[13]. L. Bai, C. Li. Investigation of indoor polycyclic aromatic hydrocarbons (PAHs) in rural Northeast China: Pollution Characteristics, Source Analysis, and Health Assessment, Buildings, vol. 12, no. 2, Feb. 2022, pp. 1-20 https://doi.org/10.3390/buildings12020153.
[14]. O. A. Adesina, F. F. Ojesola, T. I. Olowolafe, A. Igbafe. Assessment of polycyclic aromatic hydrocarbons in indoor air of local public eatery in Ado-Ekiti, Western Nigeria, Sci Afr., vol. 16, July 2022, pp. 1-8. https://doi.org/10.1016/j.sciaf.2022.e01191.
[15] K. Pozo, T. Harner, S. C. Lee, F. Wania, D. C. G. Muir, K. C. Jones. Seasonally resolved concentrations of persistent organic pollutants in the global atmosphere from the first year of the GAPS study, Environmental Science and Technology, vol. 43, 2009, pp. 796-803.
[16]. Y. Chen, G. Shen, Y Huang, Y. Zhang, Y. Han, R. Wang, H. Shen, S. Su, N. Lin, D. Zhu, L. Pei, X. Zheng, J. Wu, X. Wang, W. Liu, M. Wong, S. Tao. Household air pollution and personal exposure risk of polycyclic aromatic hydrocarbons among rural residents in Shanxi, China, Indoor Air, vol. 26, no. 2, Apr. 2016, pp. 246-258. https://doi.org/10.1111/ina.12208.
[17]. I. C. Nisbet, and P. K. LaGoy. Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs), Regulatory Toxicology and Pharmacology, vol. 16, no. 3, 1992, pp. 290-300.
[2]. N. D. Dat, M. B. Chang, Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies, Science of the Total Environment, vol. 609, July 2017, pp. 682-693. https://doi.org/10.1016/j.scitotenv.2017.07.204.
[3]. G. Shen, W. Preston, S. M. Ebersviller, C. Williams, J. W. Faircloth, J. J. Jetter, M. D. Hays, Polycyclic aromatic hydrocarbons in fine particulate matter emitted from burning kerosene, liquid petroleum gas, and wood fuels in household cookstoves, Energy and Fuels, vol. 31, no. 3, 2017, pp. 3081-3090. https://doi.org/10.1021/acs.energyfuels.6b02641.
[4]. P. K. Verma, D. Sah, J. Dubey, K. M. Kumari, A. Lakhani, Mutagenic and cancer risk estimation of particulate bound polycyclic aromatic hydrocarbons from the emission of different biomass fuels, Chemical Research in Toxicology, vol. 34, no. 3, Mar. 2021, pp. 743-753. https://doi.org/10.1021/acs.chemrestox.0c00378.
[5]. O. Oluwole, G. R. Ana, G. O. Arinola, T. Wiskel, A. G. Falusi, D. Huo, O. I. Olopade, C. O. Olopade. Effect of stove intervention on household air pollution and the respiratory health of women and children in rural Nigeria, Air Quality, Atmosphere and Health, vol. 6, Mar. 2013, pp. 553-561. https://doi.org/10.1007/s11869-013-0196-9.
[6] N. B. Omodara, A. O. Obijole, E. A. Adekunbi, H. O. Oloyede, A. Oyebade, Investigation of polycyclic aromatic hydrocarbon concentration in roasted plantain, roasted meat and smoked fish in Ondo, Nigeria, International Journal of Innovative Environmental Studies Research, vol. 3, no. 1, Mar. 2015, pp. 27-31.
[7]. C. M. A. Iwegbue, E. O. C. Iteku-Atata, E. W. Odali, F. E. Egobueze, G. O. Tesi, G. E. Nwajei, B. S. Martincigh, Distribution, sources and health risks of polycyclic aromatic hydrocarbons (PAHs) in household dusts from rural, semi-urban and urban areas in the Niger Delta, Nigeria, Exposure and Health, vol. 11, May 2019, pp. 209-225. https://doi.org/10.1007/s12403-018-0276-z.
[8]. W. Du, X. Yun, Y. Chen, Q. Zhong, W. Wang, L. Wang, M. Qi, G. Shen, S. Tao, PAHs emissions from residential biomass burning in real-world cooking stoves in rural China, Environmental Pollution, vol. 267, Dec. 2020, pp. 11592 https://doi.org/10.1016/j.envpol.2020.115592.
[9]. H. L. Wang, Y. H. Zhuang, Z. P. Hao, M. Q. Cao, J. X. Zhong, X. K. Wang, T. K. O. Nguyen, Polycyclic aromatic hydrocarbons from rural household biomass burning in a typical Chinese village, Science in China, Series D: Earth Sciences, vol. 51, July 2008, pp. 1013-1020 https://doi.org/10.1007/s11430-008-0064-x.
[10]. T. O. Etchie, A. T. Etchie, P. Oluwasanya, H. Shen, Development of national health-based target for regulating airborne polycyclic aromatic hydrocarbons exposure in Nigeria, in: Journal of Physics: Conference Series, Institute of Physics Publishing, May 2019, pp. 1-8. https://doi.org/10.1088/1742-6596/1299/1/012088.
[11]. K .P. Yu, K. R. Yang, Y. C. Chen, J. Y. Gong, Y. P. Chen, H. C. Shih, S. C. C. Lung, Indoor air pollution from gas cooking in five Taiwanese families, Building and Environment, vol. 93, no. 2, 2015, pg. 258-266. https://doi.org/10.1016/j.buildenv.2015.06.024.
[12]. S. Feng, X. Shen, X. Hao, X. Cao, X. Li, X. Yao, Y. Shi, T. Lv, Z. Yao. Polycyclic and nitro-polycyclic aromatic hydrocarbon pollution characteristics and carcinogenic risk assessment of indoor kitchen air during cooking periods in rural households in North China, Environmental Science and Pollution Research., vol. 28, no. 9, Mar. 2021, pp. 11498-11508. https://doi.org/10.1007/s11356-020-11316-8.
[13]. L. Bai, C. Li. Investigation of indoor polycyclic aromatic hydrocarbons (PAHs) in rural Northeast China: Pollution Characteristics, Source Analysis, and Health Assessment, Buildings, vol. 12, no. 2, Feb. 2022, pp. 1-20 https://doi.org/10.3390/buildings12020153.
[14]. O. A. Adesina, F. F. Ojesola, T. I. Olowolafe, A. Igbafe. Assessment of polycyclic aromatic hydrocarbons in indoor air of local public eatery in Ado-Ekiti, Western Nigeria, Sci Afr., vol. 16, July 2022, pp. 1-8. https://doi.org/10.1016/j.sciaf.2022.e01191.
[15] K. Pozo, T. Harner, S. C. Lee, F. Wania, D. C. G. Muir, K. C. Jones. Seasonally resolved concentrations of persistent organic pollutants in the global atmosphere from the first year of the GAPS study, Environmental Science and Technology, vol. 43, 2009, pp. 796-803.
[16]. Y. Chen, G. Shen, Y Huang, Y. Zhang, Y. Han, R. Wang, H. Shen, S. Su, N. Lin, D. Zhu, L. Pei, X. Zheng, J. Wu, X. Wang, W. Liu, M. Wong, S. Tao. Household air pollution and personal exposure risk of polycyclic aromatic hydrocarbons among rural residents in Shanxi, China, Indoor Air, vol. 26, no. 2, Apr. 2016, pp. 246-258. https://doi.org/10.1111/ina.12208.
[17]. I. C. Nisbet, and P. K. LaGoy. Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs), Regulatory Toxicology and Pharmacology, vol. 16, no. 3, 1992, pp. 290-300.