Ion Transport in the Return Flow Ion-Concentration-Polarization System
Main Article Content
Abstract
The novel desalination device, the return flow electromembrane desalination called Return Flow Ion-Concentration-Polarization (RF-ICP) which resolved one of the most prominent problems in ICP is the over-limiting conduction mechanism. The development of the ion depletion layer largely determines the energy consumption of electromembrane desalination, because of the increased electrical resistance of the ion-depleted boundary layer which is also a desired outcome for desalination. In this work, we conducted a study on the desalination efficiency of the RF-ICP desalination system for different operations. The transport of ions in the system was examined by using numerical simulation. The Poisson-Nernst-Planck and Navier-Stokes equations were solved numerically to model the transport of ions at different electrical current regimes and the feeding-flow rates. Obtained simulation results showed that the current and current efficiency increases with the feeding-flow rate, the salt removal ratio changes inversely with feeding-flow rate, and the energy per ion remove decreases when increasing the feeding-flow rate. The findings are useful in optimizing the design and operation of the RF-ICP desalination system.
Keywords
Electrical desalination, ions transport, numerical simulation, Poisson-Nernst-Planck-Navier-Stokes equations
Article Details
References
[1] Panagopoulos, Argyris, K.-J. Haralambous,
M. Loizidou, Desalination brine disposal methods and
treatment technologies - A review, Science of the Total
Environment 693 (2019): 133545.
https://doi.org/10.1016/j.scitotenv.2019.07.351.
[2] Elimelech, M., Phillip, W. A., The future of seawater
desalination: energy, technology, and the environment.
Science, 333(6043), 712–717, 2011.
https://doi.org/10.1126/science.1200488.
[3] Lienhard, J. H., Mistry, K. H., Sharqawy, M. H.,
Thiel, G. P., Thermodynamics, exergy, and energy
efficiency in desalination systems. Desalination
Sustainability 127–206. (2017)
https://doi.org/10.1016/b978-0-12-809791-5.00004-3.
[4] Kim, B., Choi, S., Pham, V. S., Kwak, R., Han, J.,
Energy efficiency enhancement of electromembrane
desalination systems by local flow redistribution
optimized for the asymmetry of cation/anion diffusivity,
Journal of Membrane Science, 524, 280–287. (2017)
https://doi.org/10.1016/j.memsci.2016.11.046.
[5] Lattemann, S., Höpner, T., Environmental impact and
impact assessment of seawater desalination.
Desalination, 220(1–3), 1–15. (2008)
https://doi.org/10.1016/j.desal.2007.03.009.
[6] Gregory, K. B., Vidic, R. D., Dzombak, D. A., Water
management challenges associated with the production
of shale gas by hydraulic fracturing. Elements, 7(3),
181–186. (2011)
https://doi.org/10.2113/gselements.7.3.181.
[7] Shaffer, D. L., Arias Chavez, L. H., Ben-Sasson, M.,
Romero-Vargas Castrillón, S., Yip, N. Y., Elimelech,
M., Desalination and reuse of high-salinity shale gas
produced water: drivers, technologies, and future
directions, Environmental Science & Technology,
47(17), 9569–9583. (2013)
https://doi.org/10.1021/es401966e.
[8] Thiel, G. P., Tow, E. W., Banchik, L. D., Chung, H. W.,
& Lienhard, J. H., Energy consumption in desalinating
produced water from shale oil and gas extraction.
Desalination, 366, 94–112. (2015)
https://doi.org/10.1016/j.desal.2014.12.038.
[9] Vidic, R. D., Brantley, S. L., Vandenbossche, J. M.,
Yoxtheimer, D., Abad, J. D., Impact of shale gas
development on regional water quality, Science,
340(6134), 1235009–1235009. (2013)
https://doi.org/10.1126/science.1235009.
[10] Rassenfoss, S., From flowback to fracturing: water
recycling grows in the marcellus shale, Journal of
Petroleum Technology, 63(07), 48–51. (2011)
https://doi.org/10.2118/0711-0048-jpt.
[11] Gregory, K. B., Vidic, R. D., Dzombak, D. A., Water
management challenges associated with the production
of shale gas by hydraulic fracturing, Elements, 7(3),
181–186. (2011)
https://doi.org/10.2113/gselements.7.3.181.
[12] Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot,
B., Moulin, P., Reverse osmosis desalination: Water
sources, technology, and today’s challenges. Water
Research, 43(9), 2317–2348. (2009)
https://doi.org/10.1016/j.watres.2009.03.010.
[13] Strathmann, H., Electrodialysis, a mature technology
with a multitude of new applications, Desalination,
264(3), 268–288. (2010)
https://doi.org/10.1016/j.desal.2010.04.069.
[14] Kwak, R., Guan, G., Peng, W. K., Han, J., Microscale
electrodialysis: Concentration profiling and vortex
visualization, Desalination, 308, 138–146. (2013)
https://doi.org/10.1016/j.desal.2012.07.017.
[15] Fritzmann, C., Löwenberg, J., Wintgens, T., Melin, T.,
State-of-the-art of reverse osmosis desalination.
Desalination, 216(1–3), 1–76. (2007)
https://doi.org/10.1016/j.desal.2006.12.009.
[16] Theodori, G. L., Luloff, A. E., Willits, F. K., Burnett,
D. B., Hydraulic fracturing and the management,
disposal, and reuse of frac flowback waters: Views from
the public in the Marcellus Shale. Energy Research &
Social Science, 2, 66–74. (2014)
https://doi.org/10.1016/j.erss.2014.04.007.
[17] Yoon, J., Do, V. Q., Pham, V.-S., Han, J., Return flow
ion concentration polarization desalination: A new way
to enhance electromembrane desalination, Water
Research. (2019)
https://doi.org/10.1016/j.watres.2019.05.042.
[18] Kwak, R., Pham, V. S., Kim, B., Chen, L., Han, J.,
Enhanced Salt Removal by Unipolar Ion Conduction in
Ion Concentration Polarization Desalination. Scientific
Reports, 6(1). (2016)
https://doi.org/10.1038/srep25349.
[19] Pham, S. V., Kwon, H., Kim, B., White, J. K., Lim, G.,
Han, J., Helical vortex formation in three-dimensional
electrochemical systems with ion-selective membranes.
Physical Review E, 93(3). (2016)
https://doi.org/10.1103/physreve.93.033114.
[20] Do, Q.-V., Van, D.-A., Nguyen, V.-B., Pham, V.-S.,
A numerical modeling study on inertial focusing of
microparticle in spiral microchannel. AIP Advances,
10(7), 075017. (2020)
https://doi.org/10.1063/5.0006975.
[21] Pham, V. S., Li, Z., Lim, K. M., White, J. K., Han, J.,
Direct numerical simulation of electroconvective
instability and hysteretic current-voltage response of a
permselective membrane, Physical Review E,
86(4). (2012)
https://doi.org/10.1103/physreve.86.046310.
[22] Geuzaine, C., Remacle, J.-F., Gmsh: a three-dimensional
finite element mesh generator with built-in pre- and
post-processing facilities. International Journal for
Numerical Methods in Engineering 79(11), 1309–1331. (2009).
M. Loizidou, Desalination brine disposal methods and
treatment technologies - A review, Science of the Total
Environment 693 (2019): 133545.
https://doi.org/10.1016/j.scitotenv.2019.07.351.
[2] Elimelech, M., Phillip, W. A., The future of seawater
desalination: energy, technology, and the environment.
Science, 333(6043), 712–717, 2011.
https://doi.org/10.1126/science.1200488.
[3] Lienhard, J. H., Mistry, K. H., Sharqawy, M. H.,
Thiel, G. P., Thermodynamics, exergy, and energy
efficiency in desalination systems. Desalination
Sustainability 127–206. (2017)
https://doi.org/10.1016/b978-0-12-809791-5.00004-3.
[4] Kim, B., Choi, S., Pham, V. S., Kwak, R., Han, J.,
Energy efficiency enhancement of electromembrane
desalination systems by local flow redistribution
optimized for the asymmetry of cation/anion diffusivity,
Journal of Membrane Science, 524, 280–287. (2017)
https://doi.org/10.1016/j.memsci.2016.11.046.
[5] Lattemann, S., Höpner, T., Environmental impact and
impact assessment of seawater desalination.
Desalination, 220(1–3), 1–15. (2008)
https://doi.org/10.1016/j.desal.2007.03.009.
[6] Gregory, K. B., Vidic, R. D., Dzombak, D. A., Water
management challenges associated with the production
of shale gas by hydraulic fracturing. Elements, 7(3),
181–186. (2011)
https://doi.org/10.2113/gselements.7.3.181.
[7] Shaffer, D. L., Arias Chavez, L. H., Ben-Sasson, M.,
Romero-Vargas Castrillón, S., Yip, N. Y., Elimelech,
M., Desalination and reuse of high-salinity shale gas
produced water: drivers, technologies, and future
directions, Environmental Science & Technology,
47(17), 9569–9583. (2013)
https://doi.org/10.1021/es401966e.
[8] Thiel, G. P., Tow, E. W., Banchik, L. D., Chung, H. W.,
& Lienhard, J. H., Energy consumption in desalinating
produced water from shale oil and gas extraction.
Desalination, 366, 94–112. (2015)
https://doi.org/10.1016/j.desal.2014.12.038.
[9] Vidic, R. D., Brantley, S. L., Vandenbossche, J. M.,
Yoxtheimer, D., Abad, J. D., Impact of shale gas
development on regional water quality, Science,
340(6134), 1235009–1235009. (2013)
https://doi.org/10.1126/science.1235009.
[10] Rassenfoss, S., From flowback to fracturing: water
recycling grows in the marcellus shale, Journal of
Petroleum Technology, 63(07), 48–51. (2011)
https://doi.org/10.2118/0711-0048-jpt.
[11] Gregory, K. B., Vidic, R. D., Dzombak, D. A., Water
management challenges associated with the production
of shale gas by hydraulic fracturing, Elements, 7(3),
181–186. (2011)
https://doi.org/10.2113/gselements.7.3.181.
[12] Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot,
B., Moulin, P., Reverse osmosis desalination: Water
sources, technology, and today’s challenges. Water
Research, 43(9), 2317–2348. (2009)
https://doi.org/10.1016/j.watres.2009.03.010.
[13] Strathmann, H., Electrodialysis, a mature technology
with a multitude of new applications, Desalination,
264(3), 268–288. (2010)
https://doi.org/10.1016/j.desal.2010.04.069.
[14] Kwak, R., Guan, G., Peng, W. K., Han, J., Microscale
electrodialysis: Concentration profiling and vortex
visualization, Desalination, 308, 138–146. (2013)
https://doi.org/10.1016/j.desal.2012.07.017.
[15] Fritzmann, C., Löwenberg, J., Wintgens, T., Melin, T.,
State-of-the-art of reverse osmosis desalination.
Desalination, 216(1–3), 1–76. (2007)
https://doi.org/10.1016/j.desal.2006.12.009.
[16] Theodori, G. L., Luloff, A. E., Willits, F. K., Burnett,
D. B., Hydraulic fracturing and the management,
disposal, and reuse of frac flowback waters: Views from
the public in the Marcellus Shale. Energy Research &
Social Science, 2, 66–74. (2014)
https://doi.org/10.1016/j.erss.2014.04.007.
[17] Yoon, J., Do, V. Q., Pham, V.-S., Han, J., Return flow
ion concentration polarization desalination: A new way
to enhance electromembrane desalination, Water
Research. (2019)
https://doi.org/10.1016/j.watres.2019.05.042.
[18] Kwak, R., Pham, V. S., Kim, B., Chen, L., Han, J.,
Enhanced Salt Removal by Unipolar Ion Conduction in
Ion Concentration Polarization Desalination. Scientific
Reports, 6(1). (2016)
https://doi.org/10.1038/srep25349.
[19] Pham, S. V., Kwon, H., Kim, B., White, J. K., Lim, G.,
Han, J., Helical vortex formation in three-dimensional
electrochemical systems with ion-selective membranes.
Physical Review E, 93(3). (2016)
https://doi.org/10.1103/physreve.93.033114.
[20] Do, Q.-V., Van, D.-A., Nguyen, V.-B., Pham, V.-S.,
A numerical modeling study on inertial focusing of
microparticle in spiral microchannel. AIP Advances,
10(7), 075017. (2020)
https://doi.org/10.1063/5.0006975.
[21] Pham, V. S., Li, Z., Lim, K. M., White, J. K., Han, J.,
Direct numerical simulation of electroconvective
instability and hysteretic current-voltage response of a
permselective membrane, Physical Review E,
86(4). (2012)
https://doi.org/10.1103/physreve.86.046310.
[22] Geuzaine, C., Remacle, J.-F., Gmsh: a three-dimensional
finite element mesh generator with built-in pre- and
post-processing facilities. International Journal for
Numerical Methods in Engineering 79(11), 1309–1331. (2009).