Nanomaterial SnS2-Based Sensor for VOC Gas Detection at Room Temperature

Thi Nguyet To1, Thanh Binh Dang2, Manh Hung Chu1,3, Jian Zhen Ou4, Duc Hoa Nguyen1,3,
1 International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology Ha Noi, Vietnam
2 Center for High Technology Research and Development, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
3 School of Materials Science and Engineering, Hanoi University of Science and Technology, Ha Noi, Vietnam
4 School of Engineering, RMIT University, Melbourne, Victoria, Australia

Main Article Content

Abstract

Real-time indoor hazardous gases monitoring has gained interest in ensuring human health. An effort to design gas sensing devices, which are compact in size, flexible, and low power consumption, providing high-performance sensing plays a crucial role in precise sensing of the indoor environment. Here, we have fabricated 2D SnS2 flakes for gas sensor. The 2D ultra-thin SnS2, including a few layers, shows fascinating sensing toward VOCs under room temperature with high response and fast reaction speed. The short-term stability versus time of the SnS2 sensor is investigated. Due to the great adsorption of gaseous molecules, the SnS2-gas sensor operates at room temperature without external heating sources. The Schottky junction-based sensor is one of the key factors, contributing to the higher performance of the sensor. Furthermore, its VOC-sensing mechanism is explained obviously through the energy band diagram. The SnS2-layer is considered a promising candidate in indoor VOCs monitoring and respiratory biomarker analysis in the future.

Article Details

References

[1] World Health Organization, Coronavirus disease 2019 (COVID-19): situation report, 101, 2020.
[2] J. Chen et al., The clinical and immunological features of pediatric COVID-19 patients in China, Genes Dis., vol. 7, no. 4, pp. 535-541, Dec. 2020. https://doi.org/ 10.1016/j.gendis.2020.03.008.
[3] H. H. Yousef Alimohamadi, Mojtaba Sepandi, Maryam Taghdir, Determine the most common clinical symptoms in COVID-19 patients: a systematic review and meta-analysis, PubMed Cent., vol. 61(3), no. E304-E312, 2020. https://doi.org/10.15167%2F2421-4248%2Fjpmh2020.61.3.1530.
[4] W. Ibrahim et al., Diagnosis of COVID-19 by exhaled breath analysis using gas chromatography-mass spectrometry, ERJ Open Res., vol. 7, no. 3, pp. 00139-02021, Jul. 2021. https://doi.org/ 10.1183/23120541.00139-2021.
[5] V. Saasa, T. Malwela, M. Beukes, M. Mokgotho, C.-P. Liu, and B. Mwakikunga, Sensing technologies for detection of acetone in human breath for diabetes diagnosis and monitoring, Diagnostics, vol. 8, no. 1, p. 12, Jan. 2018. https://doi.org/ 10.3390/diagnostics8010012.
[6] S.-J. Choi et al., Selective diagnosis of diabetes using Pt-Functionalized WO 3 hemitube networks as a sensing layer of acetone in exhaled breath, Anal. Chem., vol. 85, no. 3, pp. 1792-1796, Feb. 2013. https://doi.org/ 10.1021/ac303148a.
[7] WHO, Air pollution in the Western Pacific. https://bom.so/Cvhx4Z.
[8] J. M. Seguel, R. Merrill, D. Seguel, and A. C. Campagna, Indoor Air Quality, Am. J. Lifestyle Med., vol. 11, no. 4, pp. 284-295, Jul. 2017. https://doi.org/ 10.1177/1559827616653343.
[9] Dr. Christian Meyer, Overview of TVOC and Indoor Air Quality, pp. 1-11, 2021.
[10] D. E. Schraufnagel et al., Air pollution and noncommunicable diseases, Chest, vol. 155, no. 2, pp. 417-426, Feb. 2019. https://doi.org/ 10.1016/j.chest.2018.10.041.
[11] K. Dixit, S. Fardindoost, A. Ravishankara, N. Tasnim, and M. Hoorfar, Exhaled breath analysis for diabetes diagnosis and monitoring: relevance, challenges and possibilities, Biosensors, vol. 11, no. 12, p. 476, Nov. 2021. https://doi.org/ 10.3390/bios11120476.
[12] S. Kumar, V. Pavelyev, P. Mishra, N. Tripathi, P. Sharma, and F. Calle, A review on 2D transition metal di-chalcogenides and metal oxide nanostructures based NO2 gas sensors, Mater. Sci. Semicond. Process., vol. 107, p. 104865, Mar. 2020. https://doi.org/ 10.1016/j.mssp.2019.104865.
[13] Y. Zhang, W. Zeng, and Y. Li, Hydrothermal synthesis and controlled growth of hierarchical 3D flower-like MoS2 nanospheres assisted with CTAB and their NO2 gas sensing properties, Appl. Surf. Sci., vol. 455, pp. 276-282, Oct. 2018. https://doi.org/ 10.1016/j.apsusc.2018.05.224.
[14] S. Zhao, G. Wang, J. Liao, S. Lv, Z. Zhu, and Z. Li, Vertically aligned MoS2/ZnO nanowires nanostructures with highly enhanced NO2 sensing activities, Appl. Surf. Sci., vol. 456, pp. 808-816, Oct. 2018. https://doi.org/ 10.1016/j.apsusc.2018.06.103.
[15] D. Gu, X. Li, Y. Zhao, and J. Wang, Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor, Sensors Actuators B Chem., vol. 244, pp. 67-76, Jun. 2017. https://doi.org/ 10.1016/j.snb.2016.12.125.
[16] Y. Lu et al., Au-Pd modified SnS2 nanosheets for conductometric detection of xylene gas, Sensors Actuators B Chem., vol. 351, p. 130907, Jan. 2022, https://doi.org/ 10.1016/j.snb.2021.130907.
[17] X. Dong et al., Rational construction and triethylamine sensing performance of foam shaped α-MoO3@SnS2 nanosheets, Chinese Chem. Lett., vol. 33, no. 1, pp. 567-572, Jan. 2022. https://doi.org/ 10.1016/j.cclet.2021.06.022.
[18] Q. X. Zhang, S. Y. Ma, R. Zhang, Y. Tie, and S. T. Pei, Optimization ethanol detection performance manifested by SnS/SnS2 nanoparticles, Mater. Lett., vol. 258, p. 126783, Jan. 2020. https://doi.org/ 10.1016/j.matlet.2019.126783.
[19] Acetone - Hazardous Substance Fact Sheet.
[20] L. V. Duy, T. T. Nguyet, D. T. T. Le, N. V. Duy, H. Nguyen, F. Biasioli, M. Tonezzer, C. Di Natale, and N. D. hoa, Room temperature ammonia gas sensor based on p-Type-like V2O5 Nanosheets towards food spoilage monitoring, Nanomaterials., vol. 13, pp. 146-163, Dec. 2022. https://doi.org/ 10.3390/nano13010146.
[21] D. Liu, Z. Tang, and Z. Zhang, Visible light assisted room-temperature NO2 gas sensor based on hollow SnO2@SnS2 nanostructures, Sensors Actuators B Chem., vol. 324, p. 128754, Dec. 2020. https://doi.org/ 10.1016/j.snb.2020.128754.
[22] S. Singh, S. Raj, and S. Sharma, Ethanol sensing using MoS2/TiO2 composite prepared via hydrothermal method, Mater. Today Proc., vol. 46, pp. 6083-6086, 2021. https://doi.org/ 10.1016/j.matpr.2020.01.584.
[23] J. Zhang, T. Li, J. Guo, Y. Hu, and D. Zhang, Two-step hydrothermal fabrication of CeO2-loaded MoS2 nanoflowers for ethanol gas sensing application, Appl. Surf. Sci., vol. 568, p. 150942, Dec. 2021. https://doi.org/ 10.1016/j.apsusc.2021.150942.
[24] X. Xu et al., n-n Heterogeneous MoS2/SnO2 nanotubes and the excellent triethylamine (TEA) sensing performances, Mater. Lett., vol. 311, p. 131522, Mar. 2022. https://doi.org/ 10.1016/j.matlet.2021.131522.
[25] X. Chang et al., UV assisted ppb-level acetone detection based on hollow ZnO/MoS2 nanosheets core/shell heterostructures at low temperature, Sensors Actuators B Chem., vol. 317, p. 128208, Aug. 2020. https://doi.org/ 10.1016/j.snb.2020.128208.
[26] X. Chang et al., Highly sensitive acetone sensor based on WO3 nanosheets derived from WS2 nanoparticles with inorganic fullerene-like structures, Sensors Actuators B Chem., vol. 343, p. 130135, Sep. 2021. https://doi.org/ 10.1016/j.snb.2021.130135.
[27] N. Hou et al., Fabrication of oxygen-doped MoSe2 hierarchical nanosheets for highly sensitive and selective detection of trace trimethylamine at room temperature in air, Nano Res., vol. 13, no. 6, pp. 1704-1712, Jun. 2020. https://doi.org/ 10.1007/s12274-020-2796-7.
[28] H. Roshan, P. Salimi Kuchi, M. H. Sheikhi, and A. Mirzaei, Enhancement of room temperature ethanol sensing behavior of PbS-SnS2 nanocomposite by Au decoration, Mater. Sci. Semicond. Process., vol. 127, p. 105742, Jun. 2021. https://doi.org/ 10.1016/j.mssp.2021.105742.
[29] X. Xu, S. Ma, X. Xu, S. Pei, T. Han, and W. Liu, Transformation synthesis of heterostructured SnS2/ZnS microspheres for ultrafast triethylamine detection, J. Alloys Compd., vol. 868, p. 159286, Jul. 2021. https://doi.org/ 10.1016/j.jallcom.2021.159286.
[30] J. Liu, L. Zhang, J. Fan, B. Zhu, and J. Yu, Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres, Sensors Actuators B Chem., vol. 331, p. 129425, Mar. 2021. https://doi.org/ 10.1016/j.snb.2020.129425.
[31] L. Sun, Z. Yao, A. A. Haidry, Z. Li, Q. Fatima, and L. Xie, Facile one-step synthesis of TiO2 microrods surface modified with Cr2O3 nanoparticles for acetone sensor applications, J. Mater. Sci. Mater. Electron., vol. 29, no. 17, pp. 14546-14556, Sep. 2018. https://doi.org/ 10.1007/s10854-018-9589-8.
[32] H.-L. Yu et al., Fabrication of single crystalline WO3 nano-belts based photoelectric gas sensor for detection of high concentration ethanol gas at room temperature, Sensors Actuators A Phys., vol. 303, p. 111865, Mar. 2020. https://doi.org/ 10.1016/j.sna.2020.111865.
[33] X.H. Xu, S. Y. Ma, X. L. Xu, S. T. Pei, T. Han, W. W. Liu, Transformation synthesis of heterostructured SnS2/ZnS microspheres for ultrafast triethylamine detection, J. Alloys Compd., vol. 868, p. 159286, Jul. 2021. https://doi.org/ 10.1016/j.jallcom.2021.159286.