Detection of Nitrofurantoin Antibiotic via Electrochemical Technique Using Green Synthesized Iron/Graphene/Tetrakis (4-Carboxyphenyl) Porphyrin Nanocomposite as Electrode Material
Main Article Content
Abstract
Antibiotic residues are always a threat to human health. Nitrofurantoin (NFT) is an antibiotic commonly used in agriculture, which can be dangerous to human life when entering the body through antibiotic residues in food. The green synthesized iron/graphene nanocomposite has shown promising electrochemical properties as a sensor for detecting NFTs. The morphology and structure of iron/graphene nanocomposite materials were evaluated by modern analyses, including Scanning Electron Microscope combined with Energy Dispersive X-ray Spectroscopy elemental mapping (SEM-EDX mapping) and Fourier-transform infrared spectroscopy (FT-IR). The results show that iron nanoparticles with a size of 30-50 nm are evenly distributed on the graphene surface and interspersed in the porphyrin fibers. The factors of scan rate, pH, and amount of material affecting the ability to identify NFT in solution were investigated. A standard plot with a wide linear range of 1-200 µM was built to analyze NFT antibiotics. The results open up the potential for applying Fe/GNPs nanocomposite materials in electrochemical sensors to detect residues of other antibiotics in food.
Keywords
Green synthesis, electrochemical sensor, nitrofurantoin
Article Details
References
[1] A. Saini, M. Kumar, S. Bhatt, V. Saini, and A. Malik, Cancer causes and treatments, Int. J. Pharm. Sci. Res., vol. 11, no. 7, Jul. 2020, pp. 3121-3134. https://doi.org/10.13040/IJPSR.0975-8232
[2] M. M. J. Arsène et al., The public health issue of antibiotic residues in food and feed: Causes, consequences, and potential solutions, Veterinary World, vol. 15, no. 3, Mar. 2022, pp. 662-671. https://doi.org/10.14202/vetworld.2022.662-671
[3] K.-Y. Hwa and T. S. K. Sharma, Nano assembly of NiFe spheres anchored on f-MWCNT for electrocatalytic reduction and sensing of nitrofurantoin in biological samples, Sci. Rep., vol. 10, no. 1, Jul. 2020, pp. 12256. https://doi.org/10.1038/s41598-020-69125-5
[4] Y. Sun, G. I. N. Waterhouse, X. Qiao, J. Xiao, and Z. Xu, Determination of chloramphenicol in food using nanomaterial-based electrochemical and optical sensors-A review, Food Chem., vol. 410, Jun. 2023, pp. 135434. https://doi.org/10.1016/j.foodchem.2023.135434
[5] N. V. Hoang et al., Green synthesis of Fe/Graphene nanocomposite using Cleistocalyx operculatus leaf extract as a reducing agent: removal of pollutants (RhB dye and Cr6+ ions) in aqueous media, ChemistrySelect, vol. 7, no. 47, Dec. 2022, pp. e202203499. https://doi.org/10.1002/slct.202203499
[6] S. Xiao et al., Polyelectrolyte multilayer-assisted immobilization of zero-valent iron nanoparticles onto polymer nanofibers for potential environmental applications, ACS Appl. Mater. Interfaces, vol. 1, iss. 12, Dec. 2009, pp. 2848-2855. https://doi.org/10.1021/am900590j
[7] D. Vollath, Agglomeration of particles stored in a box, FirePhysChem, vol. 3, iss. 3, Sep. 2023, pp. 275-280. https://doi.org/10.1016/j.fpc.2023.03.007
[8] Q. Wan et al., Graphene nanoplatelets: electrochemical properties and applications for oxidation of endocrine‐disrupting chemicals, Chem. - Eur. J., vol. 19, no. 10, Jan. 2013, pp. 3483-3489. https://doi.org/10.1002/chem.201203607
[9] D. D. La et al., Self-assembly of monomeric porphyrin molecules into nanostructures: Self-assembly pathways and applications for sensing and environmental treatment, Environ Technol Invo., vol. 29, Feb. 2023, pp. 103019. https://doi.org/10.1016/j.eti.2023.103019
[10] T. H. Nguyen et al., Green synthesis of a photocatalyst Ag/TiO2 nanocomposite using Cleistocalyx operculatus leaf extract for degradation of organic dyes, Chemosphere, vol. 306, Nov. 2022, pp. 135474. https://doi.org/10.1016/j.chemosphere.2022.135474
[11] K. H. Le et al., Fabrication of Cleistocalyx operculatus extracts/chitosan/gum arabic composite as an edible coating for preservation of banana, Prog. Org. Coat., vol. 161, Dec. 2021, pp. 106550. https://doi.org/10.1016/j.porgcoat.2021.106550
[12] M. K. Medlej et al., Antioxidant activity and biocompatibility of fructo-polysaccharides extracted from a wild species of Ornithogalum from Lebanon, Antioxidants, vol. 10, no. 1, Jan. 2021, pp. 68. https://doi.org/10.3390/antiox10010068
[13] V. G. Gregoriou, V. Jayaraman, X. Hu, and T. G. Spiro, FT-IR Difference spectroscopy of hemoglobins A and Kempsey: Evidence that a key quaternary interaction induces protonation of Asp. beta. 99, Biochem., vol. 34, no. 20, May. 1995, pp. 6876-6882. https://doi.org/10.1021/bi00020a035
[14] M. Rengasamy, K. Anbalagan, S. Kodhaiyolii, and V. Pugalenthi, Castor leaf mediated synthesis of iron nanoparticles for evaluating catalytic effects in transesterification of castor oil, RSC Adv., vol. 6, no. 11, Jan. 2016, pp. 9261-9269. https://doi.org/10.1039/C5RA15186D
[15] D. D. La, S. V. Bhosale, L. A. Jones, N. Revaprasadu, and S. V. Bhosale, Fabrication of a Graphene@ TiO2@ Porphyrin hybrid material and its photocatalytic properties under simulated sunlight irradiation, ChemistrySelect, vol. 2, no. 11, Apr. 2017, pp. 3329-3333. https://doi.org/10.1002/slct.201700473
[16] B. Karuppaiah, R. Ramachandran, S.-M. Chen, S. Wan-Ling, and J. Y. J. N. J. o. C. Wan, Hierarchical construction and characterization of lanthanum molybdate nanospheres as an unassailable electrode material for electrocatalytic sensing of the antibiotic drug nitrofurantoin, New J. Chem., vol. 44, no. 1, Nov. 2020, pp. 46-54. https://doi.org/10.1039/C9NJ05347F
[17] P. Balasubramanian, M. Annalakshmi, S.-M. Chen, T. Sathesh, and T. S. T. Balamurugan, Ultrasonic energy-assisted preparation of β-cyclodextrin-carbon nanofiber composite: Application for electrochemical sensing of nitrofurantoin, Ultrason. Sonochem., vol. 52, Apr. 2019, pp. 391-400. https://doi.org/10.1016/j.ultsonch.2018.12.014
[18] H. A. Rudayni, A. A. Chaudhary, G. M. Abu-Taweel, M. Shariq, and M. Imran, Hydrothermal synthesis of CeO2 nanoparticles and its application in electrochemical detection of nitrofurantoin antibiotics, Europhys. Lett., vol. 137, no. 6, May. 2022, pp. 66005. https://doi.org/10.1209/0295-5075/ac6065
[19] T. Kokulnathan and T.-J. Wang, Synthesis and characterization of 3D flower-like nickel oxide entrapped on boron doped carbon nitride nanocomposite: An efficient catalyst for the electrochemical detection of nitrofurantoin, Compos. B Eng., vol. 174, Oct. 2019, pp. 106914. https://doi.org/10.1016/j.compositesb.2019.106914
[2] M. M. J. Arsène et al., The public health issue of antibiotic residues in food and feed: Causes, consequences, and potential solutions, Veterinary World, vol. 15, no. 3, Mar. 2022, pp. 662-671. https://doi.org/10.14202/vetworld.2022.662-671
[3] K.-Y. Hwa and T. S. K. Sharma, Nano assembly of NiFe spheres anchored on f-MWCNT for electrocatalytic reduction and sensing of nitrofurantoin in biological samples, Sci. Rep., vol. 10, no. 1, Jul. 2020, pp. 12256. https://doi.org/10.1038/s41598-020-69125-5
[4] Y. Sun, G. I. N. Waterhouse, X. Qiao, J. Xiao, and Z. Xu, Determination of chloramphenicol in food using nanomaterial-based electrochemical and optical sensors-A review, Food Chem., vol. 410, Jun. 2023, pp. 135434. https://doi.org/10.1016/j.foodchem.2023.135434
[5] N. V. Hoang et al., Green synthesis of Fe/Graphene nanocomposite using Cleistocalyx operculatus leaf extract as a reducing agent: removal of pollutants (RhB dye and Cr6+ ions) in aqueous media, ChemistrySelect, vol. 7, no. 47, Dec. 2022, pp. e202203499. https://doi.org/10.1002/slct.202203499
[6] S. Xiao et al., Polyelectrolyte multilayer-assisted immobilization of zero-valent iron nanoparticles onto polymer nanofibers for potential environmental applications, ACS Appl. Mater. Interfaces, vol. 1, iss. 12, Dec. 2009, pp. 2848-2855. https://doi.org/10.1021/am900590j
[7] D. Vollath, Agglomeration of particles stored in a box, FirePhysChem, vol. 3, iss. 3, Sep. 2023, pp. 275-280. https://doi.org/10.1016/j.fpc.2023.03.007
[8] Q. Wan et al., Graphene nanoplatelets: electrochemical properties and applications for oxidation of endocrine‐disrupting chemicals, Chem. - Eur. J., vol. 19, no. 10, Jan. 2013, pp. 3483-3489. https://doi.org/10.1002/chem.201203607
[9] D. D. La et al., Self-assembly of monomeric porphyrin molecules into nanostructures: Self-assembly pathways and applications for sensing and environmental treatment, Environ Technol Invo., vol. 29, Feb. 2023, pp. 103019. https://doi.org/10.1016/j.eti.2023.103019
[10] T. H. Nguyen et al., Green synthesis of a photocatalyst Ag/TiO2 nanocomposite using Cleistocalyx operculatus leaf extract for degradation of organic dyes, Chemosphere, vol. 306, Nov. 2022, pp. 135474. https://doi.org/10.1016/j.chemosphere.2022.135474
[11] K. H. Le et al., Fabrication of Cleistocalyx operculatus extracts/chitosan/gum arabic composite as an edible coating for preservation of banana, Prog. Org. Coat., vol. 161, Dec. 2021, pp. 106550. https://doi.org/10.1016/j.porgcoat.2021.106550
[12] M. K. Medlej et al., Antioxidant activity and biocompatibility of fructo-polysaccharides extracted from a wild species of Ornithogalum from Lebanon, Antioxidants, vol. 10, no. 1, Jan. 2021, pp. 68. https://doi.org/10.3390/antiox10010068
[13] V. G. Gregoriou, V. Jayaraman, X. Hu, and T. G. Spiro, FT-IR Difference spectroscopy of hemoglobins A and Kempsey: Evidence that a key quaternary interaction induces protonation of Asp. beta. 99, Biochem., vol. 34, no. 20, May. 1995, pp. 6876-6882. https://doi.org/10.1021/bi00020a035
[14] M. Rengasamy, K. Anbalagan, S. Kodhaiyolii, and V. Pugalenthi, Castor leaf mediated synthesis of iron nanoparticles for evaluating catalytic effects in transesterification of castor oil, RSC Adv., vol. 6, no. 11, Jan. 2016, pp. 9261-9269. https://doi.org/10.1039/C5RA15186D
[15] D. D. La, S. V. Bhosale, L. A. Jones, N. Revaprasadu, and S. V. Bhosale, Fabrication of a Graphene@ TiO2@ Porphyrin hybrid material and its photocatalytic properties under simulated sunlight irradiation, ChemistrySelect, vol. 2, no. 11, Apr. 2017, pp. 3329-3333. https://doi.org/10.1002/slct.201700473
[16] B. Karuppaiah, R. Ramachandran, S.-M. Chen, S. Wan-Ling, and J. Y. J. N. J. o. C. Wan, Hierarchical construction and characterization of lanthanum molybdate nanospheres as an unassailable electrode material for electrocatalytic sensing of the antibiotic drug nitrofurantoin, New J. Chem., vol. 44, no. 1, Nov. 2020, pp. 46-54. https://doi.org/10.1039/C9NJ05347F
[17] P. Balasubramanian, M. Annalakshmi, S.-M. Chen, T. Sathesh, and T. S. T. Balamurugan, Ultrasonic energy-assisted preparation of β-cyclodextrin-carbon nanofiber composite: Application for electrochemical sensing of nitrofurantoin, Ultrason. Sonochem., vol. 52, Apr. 2019, pp. 391-400. https://doi.org/10.1016/j.ultsonch.2018.12.014
[18] H. A. Rudayni, A. A. Chaudhary, G. M. Abu-Taweel, M. Shariq, and M. Imran, Hydrothermal synthesis of CeO2 nanoparticles and its application in electrochemical detection of nitrofurantoin antibiotics, Europhys. Lett., vol. 137, no. 6, May. 2022, pp. 66005. https://doi.org/10.1209/0295-5075/ac6065
[19] T. Kokulnathan and T.-J. Wang, Synthesis and characterization of 3D flower-like nickel oxide entrapped on boron doped carbon nitride nanocomposite: An efficient catalyst for the electrochemical detection of nitrofurantoin, Compos. B Eng., vol. 174, Oct. 2019, pp. 106914. https://doi.org/10.1016/j.compositesb.2019.106914