Core/Shell Structure and Photoluminescence of Silicon Nanowires

Thi Thuy Nguyen1,2, , Quang Huy Nguyen1, Khac Tung Nguyen1, Tuan Duong Vuong1, Huu Lam Nguyen1
1 School of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
2 Hung Yen University of Technical Education, Hung Yen, Vietnam

Main Article Content

Abstract

Silicon nanowires (SiNWs) were synthesized on Si (111) surfaces using the vapor–liquid–solid technique at high temperature ranging from 1100 ºC to 1200 ºC. Si:C mixture powders were used as the material sources. Scanning electron microscope images were revealed that the Si nanowires had few tens nanometer of diameter. The Si-core/SiOx-shell structure of the nanowires was investigated via transmission electron microscopy. The photoluminescence of the nanowires at room temperature demonstrated a quantum confinement effect because of the reduced diameter of the nanowires.

Article Details

References

[1] Y. Wan, J. Sha, B. Chen, Y. Fang, Z. Wang, and Y. Wang, “Nanodevices based on silicon nanowires,” Recent Pat. Nanotechnol., vol. 3, no. 1, pp. 1–9, Jan. 2009.
[2] S. Chen, A. van den Berg, and E. T. Carlen, “Sensitivity and detection limit analysis of silicon nanowire biochemical sensors,” Sensors Actuators B Chem., vol. 209, pp. 486–489, 2015.
[3] C. H. Peters, a. R. Guichard, a. C. Hryciw, M. L. Brongersma, and M. D. McGehee, “Energy transfer in nanowire solar cells with photon-harvesting shells,” J. Appl. Phys., vol. 105, no. 12, p. 124509, 2009.
[4] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. a Huggins, and Y. Cui, “High-performance lithium battery anodes using silicon nanowires,” Nat. Nanotechnol., vol. 3, no. 1, pp. 31–5, Jan. 2008.
[5] D. W. Kwak, H. Y. Cho, and W.-C. Yang, “Dimensional evolution of silicon nanowires synthesized by Au-Si island-catalyzed chemical vapor deposition,” Phys. E Low-dimensional Syst. Nanostructures, vol. 37, no. 1–2, pp. 153–157, Mar. 2007.
[6] T. Zhou, J. Q. Hu, C. P. Li, D. D. Ma, C. S. Lee, and S. T. Lee, “Silicon nanowires as chemical sensors,” Chem. Phys. Lett., vol. 369, no. 1–2, pp. 220–224, Feb. 2003.
[7] Fei Zhao, Dan Zhao, Shao-long Wu, Guo-an Wang and Rui-ting Zheng, “Fabrication and Electron Field Emission of Silicon Nanowires Synthesized by Chemical Etching,” J. Korean Phys. Soc., vol. 55, no. 6, p. 2681, Dec. 2009.
[8] H. Fang, Y. Wu, J. Zhang, and J. Zhu, “Silver catalysis effect in growth of silicon nanowire arrays,” Nanotechnology, vol. 17, no. 15, pp. 3768–3774, 2006.
[9] E. Zhang, Y. Yang, Y. Zhang, and C. Guo, “Synthesis and photoluminescence property of silicon carbon nanowires prepared by the thermal evaporation method,” Phys. E Low-dimensional Syst. Nanostructures, vol. 41, no. 4, pp. 655–659, Feb. 2009.
[10] G. Gundiah, F. L. Deepak, a. Govindaraj, and C. N. R. Rao, “Carbon-assisted synthesis of silicon nanowires,” Chem. Phys. Lett., vol. 381, no. 5–6, pp. 579–583, Nov. 2003.
[11] T. Nguyen, T. T. Nguyen, A. X. Vuong, D. L. Mai, T. H. Nguyen, C. D. Nguyen, and L. H. Nguyen, “Growth of silicon nanowires by sputtering and evaporation methods,” Phys. Status Solidi Appl. Mater. Sci., vol. 210, no. 7, pp. 1429–1432, 2013.
[12] Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, and Z. L. Wang, “Temperature-Controlled Growth of Silicon-Based Nanostructures by Thermal Evaporation of SiO Powders,” J. Phys. Chem. B, vol. 105, no. 13, pp. 2507–2514, 2001.
[13] M. Lajevardi, H. Eshghi, M. E. Ghazi, M. Izadifard, and a. Goodarzi, “Structural and optical properties of silicon nanowires synthesized by Ag-assisted chemical etching,” Mater. Sci. Semicond. Process., vol. 40, pp. 556–563, 2015.
[14] A. Kramer, T. Boeck, P. Schramm, and R. Fornari, “Investigation of Au and In as solvents for the growth of silicon nanowires on Si(111),” Phys. E Low-dimensional Syst. Nanostructures, vol. 40, no. 7, pp. 2462–2467, May 2008.
[15] R. J. Barstoti, J. E. Fischer, C. H. Lee, J. Mahmood, C. K. W. Adu, and P. C. Eklund, “Imaging, structural, and chemical analysis of silicon nanowires,” Appl. Phys. Lett., vol. 81, no. 15, p. 2866, 2002.
[16] a. D. Yoffe, “Advances in Physics Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites – zero-dimensional systems,” Adv. Phys., vol. 51, no. January 2015, pp. 799–890, 2002.
[17] G. Belomoin, J. Therrien, a. Smith, S. Rao, R. Twesten, S. Chiappetti, M. H. Nayfeh, L. Wagner, and L. Mitas, “Observation of a magic discrete family of ultrasmall Si nanoparticles,” Appl. Phys. Lett., vol. 80, no. 5, pp. 841–843, 2002.
[18] J. A. Rodriguez and M. Aceves-Mijares, “Emission Mechanisms of Si Nanocrystals and Defects in SiO 2 Materials,” J. Nanoamor., vol. 04, pp. 1–7, 2014.
[19] H. Scheel, S. Reich, and C. Thomsen, “Electronic band structure of high-index silicon nanowires,” Phys. status solidi, vol. 242, no. 12, pp. 2474–2479, Oct. 2005.
[20] G. Ledoux, J. Gong, F. Huisken, O. Guillois and C. Reynaud, “Photoluminescence of size-separated silicon nanocrystals: confirmation of quantum confinement,” Appl. Phys. Lett., vol. 80, pp. 4834–4836, 2002.