Fabrication of H2S Gas Sensor based on SnO2/NiO Thin Film
Main Article Content
Abstract
H2S gas sensor based on SnO2 (40 nm)/ NiO (20 nm) thin film was fabricated by DC sputtering method in combination with photolithography technique. Morphology, crystal structure, and composition of the synthesized thin film were characterized by SEM, EDS and XRD. The gas-sensing characteristics of the fabricated sensor were studied by real time measurement of resistance change in air and different concentrations of H2S gas. Results show that the sensor can measure low concentrations of H2S (2.5 to 10 ppm) at various temperatures ranging from 250 to 400 °C with fast response time (about 13 - 33 seconds) and fulfill the requirements in air monitoring.
Keywords
SnO2/NiO thin film, Gas sensors, H2S
Article Details
References
[1] S.K. Pandey, K.-H. Kim, K.-T. Tang, "A review of sensor-based methods for monitoring hydrogen sulfide", TrAC Trends Anal. Chem. 32 (2012) 87–99. doi:10.1016/j.trac.2011.08.008.
[2] Y. Guan, C. Yin, X. Cheng, X. Liang, Q. Diao, H. Zhang, et al., Sub-ppm H2S sensor based on YSZ and hollow balls NiMn2O4 sensing electrode, Sens. Actuators B 193 (2014) 501–508. doi:10.1016/j.snb.2013.11.072.
[3] J.-Z. Dong, S.M. DeBusk, GC–MS analysis of hydrogen sulfide, carbonyl sulfide, methanethiol, carbon disulfide, methyl thiocyanate and methyl disulfide in mainstream vapor phase cigarette smoke, Chromatographia 71 (2009) 259–265. doi:10.1365/s10337-009-1434-z.
[4] H. Nguyen, C.T. Quy, N.D. Hoa, N.T. Lam, N. Van Duy, V. Van Quang, et al., Controllable growth of ZnO nanowires grown on discrete islands of Au catalyst for realization of planar microsize gas sensors, Sens. Actuators B 193 (2014) 888–894. doi:10.1016/j.snb.2013.11.043.
[5] N.D. Hoa, N. Van Quy, M. An, H. Song, Y. Kang, Y. Cho, et al., Tin-Oxide Nanotubes for Gas Sensor Application Fabricated Using SWNTs as a Template, J. Nanosci. Nanotechnol. 8 (2008) 5586–5589. doi:10.1166/jnn.2008.1387.
[6] P. Samarasekara, T.R.N. Kumara, N.U.S. Yapa, Sputtered copper oxide (CuO) thin films for gas sensor devices, J. Phys. Condens. Matter. 18 (2006) 2417–2420. doi:10.1088/0953-8984/18/07/07.
[7] H. Liu, S.P. Gong, X.Y. Hu, J.Q. Liu, D.X. Zhou, Properties and mechanism study of SnO2 nanocrystals for H2S thick-film sensors, Sens. Actuators B 140 (2009) 190–195. doi:10.1016/j.snb.2009.04.027.
[8] D.J. Yoo, J. Tamaki, S.J. Park, N. Miura, N. Yamazoe, H2S sensing characteristics of SnO2 thin film prepared from SnO2 sol by spin coating, J. Mater. Sci. Lett. 14 (1995) 1391–1393. doi:10.1007/BF00270973.
[9] S.-W. Choi, A. Katoch, J. Zhang, S.S. Kim, Electrospun nanofibers of CuO/SnO2 nanocomposite as semiconductor gas sensors for H2S detection, Sens. Actuators B 176 (2013) 585–591. doi:10.1016/j.snb.2012.09.035.
[10] G.J. Fang, Z.L. Liu, C.Q. Liu, K.L. Yao, Room temperature H2S sensing properties and mechanism of ZnO–SnO2 sol–gel thin films, Sens. Actuators B, 6 (2000) 46.
[11] M. V. Valsinaynam, Rupali G. Deshmukh, Pravin Walke, I.S. Mulla, Fe-doped SnO2 nanomaterial: A low temperature hydrogen sulfide sensor with fast response, Materials and Physics 109 (2008) 230–234. doi:10.1016/j.matchemphys.2007.11.024.
[12] D. T. Tang, S. B. He, Dajv-X. T. Hang, Detection H2S mixed with natural gas using hollow-core photonic bandgap fiber, Opt. Int. J. Light Electron Opt. 125 (2014) 2547–2549. doi:10.1016/j.ijleo.2013.10.097.
[13] D.D. Vuong, S. Galstyan, K. Shimanoe, N. Yamazoe, Hydrogen sulfide sensing characteristics of thin films derived from SnO2 sols different in grain size, Sens. Actuators B 109 (2005) 437–442. doi:10.1016/j.snb.2004.06.034.
[14] N. Van Hieu, P. Thi Hong Van, L. Tien Nhan, N. Van Duy, N. Duc Hoa, Giant enhancement of H2S gas response by decorating n-type SnO2 nanowires with p-type NiO nanoparticles, Appl. Phys. Lett. 101 (2012) 253106. doi:10.1063/1.4772488.
[2] Y. Guan, C. Yin, X. Cheng, X. Liang, Q. Diao, H. Zhang, et al., Sub-ppm H2S sensor based on YSZ and hollow balls NiMn2O4 sensing electrode, Sens. Actuators B 193 (2014) 501–508. doi:10.1016/j.snb.2013.11.072.
[3] J.-Z. Dong, S.M. DeBusk, GC–MS analysis of hydrogen sulfide, carbonyl sulfide, methanethiol, carbon disulfide, methyl thiocyanate and methyl disulfide in mainstream vapor phase cigarette smoke, Chromatographia 71 (2009) 259–265. doi:10.1365/s10337-009-1434-z.
[4] H. Nguyen, C.T. Quy, N.D. Hoa, N.T. Lam, N. Van Duy, V. Van Quang, et al., Controllable growth of ZnO nanowires grown on discrete islands of Au catalyst for realization of planar microsize gas sensors, Sens. Actuators B 193 (2014) 888–894. doi:10.1016/j.snb.2013.11.043.
[5] N.D. Hoa, N. Van Quy, M. An, H. Song, Y. Kang, Y. Cho, et al., Tin-Oxide Nanotubes for Gas Sensor Application Fabricated Using SWNTs as a Template, J. Nanosci. Nanotechnol. 8 (2008) 5586–5589. doi:10.1166/jnn.2008.1387.
[6] P. Samarasekara, T.R.N. Kumara, N.U.S. Yapa, Sputtered copper oxide (CuO) thin films for gas sensor devices, J. Phys. Condens. Matter. 18 (2006) 2417–2420. doi:10.1088/0953-8984/18/07/07.
[7] H. Liu, S.P. Gong, X.Y. Hu, J.Q. Liu, D.X. Zhou, Properties and mechanism study of SnO2 nanocrystals for H2S thick-film sensors, Sens. Actuators B 140 (2009) 190–195. doi:10.1016/j.snb.2009.04.027.
[8] D.J. Yoo, J. Tamaki, S.J. Park, N. Miura, N. Yamazoe, H2S sensing characteristics of SnO2 thin film prepared from SnO2 sol by spin coating, J. Mater. Sci. Lett. 14 (1995) 1391–1393. doi:10.1007/BF00270973.
[9] S.-W. Choi, A. Katoch, J. Zhang, S.S. Kim, Electrospun nanofibers of CuO/SnO2 nanocomposite as semiconductor gas sensors for H2S detection, Sens. Actuators B 176 (2013) 585–591. doi:10.1016/j.snb.2012.09.035.
[10] G.J. Fang, Z.L. Liu, C.Q. Liu, K.L. Yao, Room temperature H2S sensing properties and mechanism of ZnO–SnO2 sol–gel thin films, Sens. Actuators B, 6 (2000) 46.
[11] M. V. Valsinaynam, Rupali G. Deshmukh, Pravin Walke, I.S. Mulla, Fe-doped SnO2 nanomaterial: A low temperature hydrogen sulfide sensor with fast response, Materials and Physics 109 (2008) 230–234. doi:10.1016/j.matchemphys.2007.11.024.
[12] D. T. Tang, S. B. He, Dajv-X. T. Hang, Detection H2S mixed with natural gas using hollow-core photonic bandgap fiber, Opt. Int. J. Light Electron Opt. 125 (2014) 2547–2549. doi:10.1016/j.ijleo.2013.10.097.
[13] D.D. Vuong, S. Galstyan, K. Shimanoe, N. Yamazoe, Hydrogen sulfide sensing characteristics of thin films derived from SnO2 sols different in grain size, Sens. Actuators B 109 (2005) 437–442. doi:10.1016/j.snb.2004.06.034.
[14] N. Van Hieu, P. Thi Hong Van, L. Tien Nhan, N. Van Duy, N. Duc Hoa, Giant enhancement of H2S gas response by decorating n-type SnO2 nanowires with p-type NiO nanoparticles, Appl. Phys. Lett. 101 (2012) 253106. doi:10.1063/1.4772488.