Influence of Sintering Temperature on the Properties of in-Situ Carbide-Reinforced Hybrid Copper-Based Composite

Minh Hai Le1, , Ngoc Binh Duong1, Duc Huy Tran1
1 Hanoi University of Science and Technology – No. 1, Dai Co Viet Str., Hai Ba Trung, Ha Noi, Viet Nam

Main Article Content

Abstract

The aim of this research is to investigate the influence of the sintering temperature on the properties of the in-situ carbide (Nb,Ti)C in a copper matrix synthesized via mechanical alloying and powder metallurgy from elemental powders of Cu, Nb, Ti and graphite. The mixture of starting powders with compositions corresponding to Cu-15vol.% (Nb, Ti)C was mechanical alloyed using a planetary ball mill for 20 hours. The as-milled powders then were uniaxial cold pressed at compaction pressure of 800 MPa and sintered in a vacuum sintering furnace for 1 hour at different temperatures from 700 to 1000oC. The obtained results revealed that sintering temperature was an important factor to produce a bulk in-situ Cu-(Nb, Ti)C composite. Higher sintering temperature led to an increase in density and electrical conductivity of the bulk composite with a decrease in microhardness as a result of higher rate of recrystallization and the elimination of dislocation at higher sintering temperature.

Article Details

References

[1] T. Takahashi, Y. Hashimoto, Mater. Sci. Forum. 88 (1992) 175–182.
[2] M. T. Marques, V. Livramento, J. B. Correia, A. Almeida, R. Vilar, Materials Science and Engineering A 399 (2005) 382–386.
[3] M.T. Marques, A.M. Ferraria, J.B. Correia, A.M. Botelho do Reg, R. Vilar, Materials Chemistry and Physics 109 (2008) 174–180.
[4] Z. Hussain, R. Othman, D. L. Bui, U. Minoru, Journal of Alloys and Compounds 464 (2008) 185-189.
[5] H. Zuhailawati, T.L. Yong, Materials Science and Engineering A 505(2009) 27-30.
[6] E. Botcharova, M. Heilmaier, J. Freudenberger, G. Drew, D. Kudashow, U. Martin, L. Schultz, J. Alloys Compd. 351 (2003) 119-125.
[7] L.E. Toth, Transition Metal Carbides and Nitrides, Academic Press, New York (1971) 13.
[8] Q. Yuan, Y. Zheng, H. Yu, Journal of Refractory Metals & Hard Materials 27 (2009) 696-700.
[9] Zhu X., K. Zhao, B. Cheng, Q. Lin, X. Zhang, T. Chen, Y. Su, Materials Science and Engineering C 16 (2001) 103–105.
[10] V. Udhayabanu, K.R. Ravi, V. Vinod, B.S. Murty, Intermetallics 18 (2010) 353-358.
[11] D. Ravinder, Materials Letters 40 (1999) 198–203.
[12] D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys (1980), McGraw-Hill, 24.
[13] R.M. German, Sintering theory and Practice (1996), Wiley, New York, 56.
[14] M. Rahimian, N. Ehsani, N. Parvin, H.R. Baharvandi, Materials and Design 30 (2009) 3333-3337.
[15] K.V. Manukyan, S.L. Kharatyan, G. Blugan, P. Kocher, J. Kuebler, Journal of the European Ceramic Society (29) (2008) 2053-2060.