Design of a High-Efficiency GaN High-Electron Mobility Transistor Microwave Power Amplifier
Main Article Content
Abstract
This study presents a design procedure to obtain high-efficiency for microwave power amplifier. The designed amplifier uses a GaN high electron mobility transistor as an active device. Matching networks including input and output networks are realized using Megtron6 substrate microstrip lines. The designed amplifier operates at 2.1 GHz band. The simulated results show that the amplifier delivers a maximum power-added efficiency of 73.2% at output power and power gain of 47.8 dBm and 13.8 dB, respectively. This promising designed performance makes this amplifier to be an excellent candidate for use in modern wireless communication systems like radar, mobile network, and satellite communications.
Keywords
Microwave engineering, power amplifier, GaN, HEMT
Article Details
References
[1] S.A. El-Hamamsy, IEEE Trans. Power Electron., 9 3 (1994) 297–308.
[2] N. Sokal and A. Sokal, IEEE J. Solid-State Circuits, SC-10 (1975) 168–176.
[3] C. Duvanaud, S. Dietsche, G. Pataut, and J. Obregon, IEEE Microwave Guided Wave Lett., 3(1993) 268–270.
[4] S. Miwa, Y. Kamo, Y. Kittaka, T. Yamasaki, Y. Tsukahara, T. Tanii, M. Kohno, S. Goto and A. Shima; A 67% PAE, 100 W GaN power amplifier with on-chip harmonic tuning circuits for C-band space applications; 2011 IEEE MTT-S International Microwave Symposium; Baltimore, MD, USA; 2011.
[5] H. Kobayashi, J.M. Hinrichs and P.M. Asbeck, IEEE Trans. Microw. Theory Techn., 49 12(2011) 2480–2485.
[6] A. Gupta, Y. Arondekar, S.V.G. Ravindranath, H. Krishnaswamy and B.N. Jagatap, A 13.56 MHz high power and high efficiency RF source; 2013 IEEE MTT-S International Microwave Symposium; Seattle, WA, USA; 2013.
[7] T. Mury, V.F. Fusco and H. Cantu, IET Microwaves Antennas Propag., 1 2(2007) 267–272.
[8] N. Kumar, C. Prakash, A. Grebennikov and A. Mediano, IEEE Trans. Microw. Theory Techn., 56 3(2008) 604–612.
[9] Y. Leng, Y. Zeng, L. Zhang, G. Zhang, Y. Peng, J. Guan and Y. Yan, IEEE Trans. Microw. Theory Tech., 61 4(2013) 1628–1638.
[10] P. Colantonio, F. Giannini, G. Leuzzi and E. Limiti, Int. J. RF Microw. Comput.-Aided Eng., 9 2(1997) 2007–2012.
[11] K. Kuroda, R. Ishikawa and K. Honjo, IEEE Trans. Microw. Theory Tech., 58 11(2010) 2741–2750.
[2] N. Sokal and A. Sokal, IEEE J. Solid-State Circuits, SC-10 (1975) 168–176.
[3] C. Duvanaud, S. Dietsche, G. Pataut, and J. Obregon, IEEE Microwave Guided Wave Lett., 3(1993) 268–270.
[4] S. Miwa, Y. Kamo, Y. Kittaka, T. Yamasaki, Y. Tsukahara, T. Tanii, M. Kohno, S. Goto and A. Shima; A 67% PAE, 100 W GaN power amplifier with on-chip harmonic tuning circuits for C-band space applications; 2011 IEEE MTT-S International Microwave Symposium; Baltimore, MD, USA; 2011.
[5] H. Kobayashi, J.M. Hinrichs and P.M. Asbeck, IEEE Trans. Microw. Theory Techn., 49 12(2011) 2480–2485.
[6] A. Gupta, Y. Arondekar, S.V.G. Ravindranath, H. Krishnaswamy and B.N. Jagatap, A 13.56 MHz high power and high efficiency RF source; 2013 IEEE MTT-S International Microwave Symposium; Seattle, WA, USA; 2013.
[7] T. Mury, V.F. Fusco and H. Cantu, IET Microwaves Antennas Propag., 1 2(2007) 267–272.
[8] N. Kumar, C. Prakash, A. Grebennikov and A. Mediano, IEEE Trans. Microw. Theory Techn., 56 3(2008) 604–612.
[9] Y. Leng, Y. Zeng, L. Zhang, G. Zhang, Y. Peng, J. Guan and Y. Yan, IEEE Trans. Microw. Theory Tech., 61 4(2013) 1628–1638.
[10] P. Colantonio, F. Giannini, G. Leuzzi and E. Limiti, Int. J. RF Microw. Comput.-Aided Eng., 9 2(1997) 2007–2012.
[11] K. Kuroda, R. Ishikawa and K. Honjo, IEEE Trans. Microw. Theory Tech., 58 11(2010) 2741–2750.