Hydrodynamic and Dynamic Analysis to Determine the Longitudinal Hydrodynamic Coefficients of an Autonomous Underwater Vehicle
Main Article Content
Abstract
A useful tool for understanding the performance of an Autonomous Underwater Vehicle (AUV) is a dynamic simulation of the motions of the vehicle. To perform the simulation, the hydrodynamic coefficients of the vehicle must be first provided. These coefficients are specific to the vehicle and provide the description of hydrodynamic forces and moments acting on the vehicle in an underwater environment. This paper provides a method for the calculation and evaluation of the hydrodynamic coefficients of an AUV. The presence methodology is therefore one useful tool for determining an underwater vehicle’s dynamic stability. The calculated values have been compared with experimental results of a torpedo shape. It was concluded that the methods could calculate accurate values of the hydrodynamic coefficients for a specific AUV shape with its elliptical nose
Keywords
Stability, Autonomous Underwater Vehicles (AUV), simulation, hydrodynamic coefficients
Article Details
References
1. Martin Renilson. Submarine Hydrodynamics, Springer, ISBN 978-3-319-16184-6, 2015.
2. D.A. Jone, D.B. Clarke, I.B. Brayshaw, J.L. Barillon, B. Anderson. The Calculation of Hydrodynamic Coefficients for Underwater Vehicles, Victoria, DSTO COA, Australia, 2002.
3. Finck, R.D. “USAF Stability and Control Data Compendium” (DATCOM), Air Force Flight Dynamics Laboratory, Wright Patterson Air Force Base, April, 1976.
4. Fossen T. I. Handbook of Marine Craft Hydrodynamics and Motion Control, Wiley, 2011.
5. Lê Quang, Pham T.T. Hương. Tính toán các đặc tính động lực học và khảo sát ổn định chế độ hạ cánh của máy bay phản lực luyện tập loại nhỏ, Báo Tạp chí Cơ khí, Số 6 (2019), 68-72.
6. Robert C. Nelson. Flight Stability and Automatic Control. 2nd Edition, McGraw-Hill, 1984.
7. M. Nita, D. Scholz. Estimating the Oswald Factor from Basic Aircraft Geometrical Parameters, Deutscher Luft-und Raumfahrtkongress (2012), 14-19.
8. Vepa Ranjan. Flight Dynamics, Simulation and Control for Rigid and Flexible Aircraft. CRC Press, Taylor & Francis Group, LLC, 2015.
2. D.A. Jone, D.B. Clarke, I.B. Brayshaw, J.L. Barillon, B. Anderson. The Calculation of Hydrodynamic Coefficients for Underwater Vehicles, Victoria, DSTO COA, Australia, 2002.
3. Finck, R.D. “USAF Stability and Control Data Compendium” (DATCOM), Air Force Flight Dynamics Laboratory, Wright Patterson Air Force Base, April, 1976.
4. Fossen T. I. Handbook of Marine Craft Hydrodynamics and Motion Control, Wiley, 2011.
5. Lê Quang, Pham T.T. Hương. Tính toán các đặc tính động lực học và khảo sát ổn định chế độ hạ cánh của máy bay phản lực luyện tập loại nhỏ, Báo Tạp chí Cơ khí, Số 6 (2019), 68-72.
6. Robert C. Nelson. Flight Stability and Automatic Control. 2nd Edition, McGraw-Hill, 1984.
7. M. Nita, D. Scholz. Estimating the Oswald Factor from Basic Aircraft Geometrical Parameters, Deutscher Luft-und Raumfahrtkongress (2012), 14-19.
8. Vepa Ranjan. Flight Dynamics, Simulation and Control for Rigid and Flexible Aircraft. CRC Press, Taylor & Francis Group, LLC, 2015.