NO₂ Gas Sensing Characteristics of SnO₂ Nanofiber-Based Sensors

Hong Phuoc Phan1, Manh Hung Chu1, , Van Duy Nguyen1
1 Hanoi University of Science and Technology - No. 1, Dai Co Viet Str., Hai Ba Trung, Ha Noi, Viet Nam

Main Article Content

Abstract

In this work, the SnO₂ nanofibers (NFs) were directly synthesized through a electrospinning method following the annealing treatment process at 600°C for 3h. The morphological, compositional, crystal properties of material were characterized using field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), respectively. The FESEM images of SnO₂ NFs shows the typical spider-net like morphology with ~150 nm in diameter. Besides, the EDX spectrum reveals the presence of Sn and O atoms in the synthesized nanofibers. The XRD exhibited the formation of crystalline phases of tetragonal SnO₂. The gas sensing properties of fibers were tested towards NO₂ gas as a function concentration within a temperature range of 250 to 450°C. Under the optimal operating temperature of 350°C, the SnO₂ NF sensors can be detected NO₂ gas at low concentration down to 0.015 ppm. These results show its ability for NO₂ gas detection in gas sensor application.

Article Details

References

[1] S. P. Oberegger, O. A. H. Jones, and M. J. S. Spencer, Effect of nanostructuring of ZnO for gas sensing of nitrogen dioxide, Comput. Mater. Sci., vol. 132, pp. 104–115, 2017.
[2] B. T. Marquis and J. F. Vetelino, A semiconducting metal oxide sensor array for the detection of NOx and NH₃, Sensors Actuators, B Chem., vol. 77, no. 1–2, pp. 100–110, 2001.
[3] J. V. Patil, S. S. Mali, A. S. Kamble, C. K. Hong, J. H. Kim, and P. S. Patil, Electrospinning: A versatile technique for making of 1D growth of nanostructured nanofibers and its applications: An experimental approach, Appl. Surf. Sci., vol. 423, pp. 641–674, 2017.
[4] X. Kou et al., Superior acetone gas sensor based on electrospun SnO₂ nanofibers by Rh doping, Sensors Actuators, B Chem., vol. 256, pp. 861–869, 2018.
[5] J. Y. Park, K. Asokan, S. W. Choi, and S. S. Kim, Growth kinetics of nanorains in SnO₂ fibers and size dependent sensing properties, Sensors Actuators, B Chem., vol. 152, no. 2, pp. 254–260, 2011.
[6] Y. Zhang, X. He, J. Li, Z. Miao, and F. Huang, Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO₂ nanofibers, Sensors Actuators, B Chem., vol. 132, no. 1, pp. 67–73, 2008.
[7] L. Liu, C. Guo, S. Li, L. Wang, Q. Dong, and W. Li, Improved H₂ sensing properties of Co-doped SnO₂ nanofibers, Sensors Actuators, B Chem., vol. 150, no. 2, pp. 806–810, 2010.
[8] P. H. Phuoc, C. M. Hung, N. Van Toan, and N. Van Duy, One-step fabrication of SnO₂ porous nanofiber gas sensors for sub-ppm H₂ S detection, Submit. to Sensors Actuators A, no. 1, 2019.
[9] N. Van Hoang, C. M. Hung, N. D. Hoa, N. Van Duy, and N. Van Hieu, Facile on-chip electrospinning of ZnFe₂O₄ nanofiber sensors with excellent sensing performance to H₂ S down ppb level, J. Hazard. Mater., vol. 360, no. July, pp. 6–16, 2018.
[10] L. V. Thong, L. T. N. Loan, and N. Van Hieu, Comparative study of gas sensor performance of SnO₂ nanowires and their hierarchical nanostructures, Sensors Actuators, B Chem., vol. 150, no. 1, pp. 112–119, 2010.
[11] L. A. Currie, Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995), Anal. Chim. Acta, vol. 391, no. 2, pp. 105–126, 1999.
[12] N. Van Hoang, C. M. Hung, N. D. Hoa, N. Van Duy, I. Park, and N. Van Hieu, Excellent detection of H₂ S gas at ppb concentrations using ZnFe₂O₄ nanofibers loaded with reduced graphene oxide, Sensors Actuators, B Chem., vol. 282, pp. 876–884, Mar. 2019.
[13] National Institute for Occupational Safety and Health, Threshold Limit Values (TLV) and Immediately Dangerous to Life and Health (IDLH) values, Saf. Heal., p. 900, 2005.
[14] P. Feng, Q. Wan, and T. H. Wang, “Contact-controlled sensing properties of flowerlike ZnO nanostructures,” Appl. Phys. Lett., vol. 87, no. 21, pp. 1–3, 2005.
[15] N. As and G. A. S. S. Devices, Gas Sensing Devices Metal Oxide.
[16] N. G. Cho, D. J. Yang, M. J. Jin, H. G. Kim, H. L. Tuller, and I. D. Kim, Highly sensitive SnO₂ hollow nanofiber-based NO₂ gas sensors, Sensors Actuators, B Chem., vol. 160, no. 1, pp. 1468–1472, 2011.
[17] P. Rai and Y. T. Yu, Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application, Sensors Actuators, B Chem., vol. 173, no. 10, pp. 58–65, 2012.
[18] A. Mirzaei, B. Hashemi, and K. Janghorban, α-Fe₂O₃ based nanomaterials as gas sensors, J. Mater. Sci. Mater. Electron., vol. 27, no. 4, pp. 3109–3144, 2016.
[19] A. A. Haidry, N. Kind, and B. Saruhan, Investigating the influence of Al-doping and background humidity on NO₂ sensing characteristics of magnetron-sputtered SnO₂ sensors, J. Sensors Sens. Syst., vol. 4, no. 2, pp. 271–280, 2015.