Optimizing Placement of Automatic Sectionalizers in Distribution System Using Genetic Algorithm
Main Article Content
Abstract
In recent years, improving the reliability of the distribution power system is one of the most concerned problems of the power utilities. This paper presents the strategy to deal with the problem of automatic sectionalizers placement in radial distribution feeders. Specifically, the genetic algorithm is used to find out the optimized location of automatic sectionalizers on a medium-voltage feeder of northern power distribution system in Vietnam. This study aims to improve the reliability of the distribution network by reducing the SAIDI and ENS indices.
Keywords
optimal placement, genetic algorithm, automatic sectionalizer, distribution network
Article Details
References
[1] M. Mirzaei, M. A. Kadir, E. Moazami, and H. Hizam, Review of fault location methods for distribution power system, Australian Journal of Basic and Applied Sciences , vol. 3, no. 3, pp. 2670–2676, 2009.
[2] Z. Q. Bo, G. Weller, and M. A. Redfern, Accurate fault location technique for distribution system using faultgenerated high-frequency transient voltage signals, IEE Proc. - Gener. Transm. Distrib., vol. 146, no. 1, p. 73, 1999.
[3] F. H. H. Magnago and A. Abur, Fault location Using Wavelets, IEEE Trans. Power Deliv., vol. 13, no. 4, pp. 1475–1480, 1998.
[4] D. You, L. Ye, X. Yin, Q. Yao, K. Wang, and J. Wu, A new fault-location method with high robustness for distribution systems, Elektron. ir Elektrotechnika, vol. 19, no. 6, pp. 31–36, 2013.
[5] R. H. Salim, K. C. O. Salim, and A. S. Bretas, Further improvements on impedance-based fault location for power distribution systems, IET Gener. Transm. Distrib., vol. 5, no. 4, p. 467, 2011.
[6] K. Sun, Q. Chen, and Z. Gao, An Automatic Faulted Line Section Location Method for Electric Power Distribution Systems Based on Multisource Information, IEEE Trans. Power Deliv., vol. 31, no. 4, pp. 1542–1551, 2016.
[7] J. H. Teng, W. H. Huang, and S. W. Luan, Automatic and fast faulted line-section location method for distribution systems based on fault indicators, IEEE Trans. Power Syst., vol. 29, no. 4, pp. 1653–1662, 2014.
[8] W. F. Usida, D. V. Coury, R. A. Flauzino, and I. N. da Silva, Efficient Placement of Fault Indicators in an Actual Distribution System Using Evolutionary Computing, IEEE Trans. Power Syst., vol. 27, no. 4, pp. 1841–1849, Nov. 2012.
[9] S. Nejadjfard-jahromi, A. Hajehrahimi, and M. Rashidinejad, Fault indicator location in distribution system using Fuzzy clustering-based genetic algorithm, in 2014 Iranian Conference on Intelligent Systems (ICIS), 2014, pp. 1–6.
[10] D. M. B. S. de Souza, A. F. de Assis, I. N. da Silva, and W. F. Usida, Efficient fuzzy approach for allocating fault indicators in power distribution lines, in 2008 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, 2008, pp. 1–6.
[11] D. M. B. S. De Souza, V. Ziolkowski, and R. a Flauzino, Efficient allocation of fault indicators in distribution circuits using fuzzy logic, Power Energy Soc. Gen. Meet. 2009.PES ’09. IEEE, pp. 1–6, 2009.
[12] R. L. Haupt and S. E. Haupt, Practical genetic algorithms, 2nd ed., vol. 18. 2006.
[13] IEEE Std 1366TM, IEEE Guide for Electric Power Distribution Reliability Indices, 2003.
[14] J. Kennedy and R. Eberhart, Particle swarm optimization, in Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948.
[2] Z. Q. Bo, G. Weller, and M. A. Redfern, Accurate fault location technique for distribution system using faultgenerated high-frequency transient voltage signals, IEE Proc. - Gener. Transm. Distrib., vol. 146, no. 1, p. 73, 1999.
[3] F. H. H. Magnago and A. Abur, Fault location Using Wavelets, IEEE Trans. Power Deliv., vol. 13, no. 4, pp. 1475–1480, 1998.
[4] D. You, L. Ye, X. Yin, Q. Yao, K. Wang, and J. Wu, A new fault-location method with high robustness for distribution systems, Elektron. ir Elektrotechnika, vol. 19, no. 6, pp. 31–36, 2013.
[5] R. H. Salim, K. C. O. Salim, and A. S. Bretas, Further improvements on impedance-based fault location for power distribution systems, IET Gener. Transm. Distrib., vol. 5, no. 4, p. 467, 2011.
[6] K. Sun, Q. Chen, and Z. Gao, An Automatic Faulted Line Section Location Method for Electric Power Distribution Systems Based on Multisource Information, IEEE Trans. Power Deliv., vol. 31, no. 4, pp. 1542–1551, 2016.
[7] J. H. Teng, W. H. Huang, and S. W. Luan, Automatic and fast faulted line-section location method for distribution systems based on fault indicators, IEEE Trans. Power Syst., vol. 29, no. 4, pp. 1653–1662, 2014.
[8] W. F. Usida, D. V. Coury, R. A. Flauzino, and I. N. da Silva, Efficient Placement of Fault Indicators in an Actual Distribution System Using Evolutionary Computing, IEEE Trans. Power Syst., vol. 27, no. 4, pp. 1841–1849, Nov. 2012.
[9] S. Nejadjfard-jahromi, A. Hajehrahimi, and M. Rashidinejad, Fault indicator location in distribution system using Fuzzy clustering-based genetic algorithm, in 2014 Iranian Conference on Intelligent Systems (ICIS), 2014, pp. 1–6.
[10] D. M. B. S. de Souza, A. F. de Assis, I. N. da Silva, and W. F. Usida, Efficient fuzzy approach for allocating fault indicators in power distribution lines, in 2008 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, 2008, pp. 1–6.
[11] D. M. B. S. De Souza, V. Ziolkowski, and R. a Flauzino, Efficient allocation of fault indicators in distribution circuits using fuzzy logic, Power Energy Soc. Gen. Meet. 2009.PES ’09. IEEE, pp. 1–6, 2009.
[12] R. L. Haupt and S. E. Haupt, Practical genetic algorithms, 2nd ed., vol. 18. 2006.
[13] IEEE Std 1366TM, IEEE Guide for Electric Power Distribution Reliability Indices, 2003.
[14] J. Kennedy and R. Eberhart, Particle swarm optimization, in Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948.