An Approach to Determine the Stable Operating Area for Internal Gear Motors and Pumps Based on Safe Lubrication Oil Film Thickness
Main Article Content
Abstract
Designers and manufacturers always desire a simple method to verify the stable and unstable operating area for rotating machines at the early design stage. However, it is sometimes not easy due to lots of phenomena happened inside machines. This paper proposes an approach to determine the instability threshold for the internal gear motors and pumps based on the safe film thickness. By using the mobility method, the maximum eccentricity and the minimum oil lubrication film thickness can be determined, consequently, the minimum speed limit can be retrieved. From that, the stable operating area of internal gear motor and pump can be determined based on the lower speed limit. With proposal approach, the effect of geometry parameters on the stable operating area can be easily assessed. The numerical calculations of stable operating area are also compared to the experimental results of the stable operating area according to the manufacturer. The results show that the geometric parameters, e.g. radial clearance and L/D ratio, have significant effects on stable operating of the internal gear motors and pumps. These parameters, therefore, must be chosen correctly at the early design stage otherwise the stable operating area will be greatly reduced.
Keywords
Stable operating area, Minimum speed limit, Internal gear motor and pump, Lubrication oil film
Article Details
References
[1] M. G. L. Zarotti; Reduzierung von Strömungspulsationen durch ein neues Konzept von Zahnradpumpen. O+P Ölhydraulik und Pneumatik 44 Nr.1, (2000) 33–36.
[2] C. M. R. Pipes; Spaltkompensierte Hochdruck - Innenzahnradpumpen. O+P Ölhydraulik und Pneumatik 46 Nr.5, (2002) 296–299.
[3] Z. Chen, Z. Lv, R. Xu, J. Liao; Simulation and Test of Gear Pump Flow Pulsation; International Journal of Fluid Machinery and Systems, Volume 11 Issue 3, (2016) 265–272.
[4] Y. Inaguma; Calculation of Theoretical Torque and Displacement in an Internal Gear Pump; JTEKT Eng. J. English Ed., no. 1001E, (2006).
[5] Z. Paszota and C. Assembly; Theoretical and mathematical models of the torque of mechanical losses in a hydraulic rotational motor for hydrostatic drive; POLISH Marit. Res., vol. 17, no. 66, (2010) 18–25.
[6] Y. Inaguma; Friction torque characteristics of an internal gear pump; Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 225, no. 6, (2011) 1523–1534.
[7] N. Y. Y. Inaguma; Mathematical Analysis of Efficiencies in Hydraulic Pumps for Automatic Transmissions; JTEKT Eng. J. English Ed. No., vol. No. 1011E, (2014) 64–73.
[8] W. Song, Y. Chen, and H. Zhou; Investigation of fluid delivery and trapped volume performances of Truninger gear pump by a discretization approach; Adv. Mech. Eng., vol. 8, no. 10, (2016) 1–15.
[9] D. Khalid and R. B. Weli; Factors Affecting the Characteristics of Gear Pump; 1st Int. Eng. Innov. Technol. SU-ICEIT, (2016) 162–168.
[10] M. Rundo and A. Corvaglia; Lumped Parameters Model of a Crescent Pump; Energies, vol. 9, no. 11, (2016) 876–899.
[11] W. Gutbrodt; Druckpulsation von Außen-und Innenzahnradpumpen und deren Auswirkungen auf das Pumpenaggregat; O+P Ölhydraulik und Pneumatik 19, Nr.4, (1975) 250–257.
[12] S. Schwarzer and P. T. Körner; Leise Innenzahnradpumpen durch Reduzierung von „Quetschöl“ – theoretische und experimentelle; O+P Ölhydraulik und Pneumatik 44 Nr.1, vol. 3, (2016) 62–67.
[13] S. Admad; Rotor Casing Contact Phenomenon in Rotor Dynamics - Literature Survey; Journal of Vibration Control, Vol. 16, No. 9, (2010) 1369–1377.
[2] C. M. R. Pipes; Spaltkompensierte Hochdruck - Innenzahnradpumpen. O+P Ölhydraulik und Pneumatik 46 Nr.5, (2002) 296–299.
[3] Z. Chen, Z. Lv, R. Xu, J. Liao; Simulation and Test of Gear Pump Flow Pulsation; International Journal of Fluid Machinery and Systems, Volume 11 Issue 3, (2016) 265–272.
[4] Y. Inaguma; Calculation of Theoretical Torque and Displacement in an Internal Gear Pump; JTEKT Eng. J. English Ed., no. 1001E, (2006).
[5] Z. Paszota and C. Assembly; Theoretical and mathematical models of the torque of mechanical losses in a hydraulic rotational motor for hydrostatic drive; POLISH Marit. Res., vol. 17, no. 66, (2010) 18–25.
[6] Y. Inaguma; Friction torque characteristics of an internal gear pump; Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 225, no. 6, (2011) 1523–1534.
[7] N. Y. Y. Inaguma; Mathematical Analysis of Efficiencies in Hydraulic Pumps for Automatic Transmissions; JTEKT Eng. J. English Ed. No., vol. No. 1011E, (2014) 64–73.
[8] W. Song, Y. Chen, and H. Zhou; Investigation of fluid delivery and trapped volume performances of Truninger gear pump by a discretization approach; Adv. Mech. Eng., vol. 8, no. 10, (2016) 1–15.
[9] D. Khalid and R. B. Weli; Factors Affecting the Characteristics of Gear Pump; 1st Int. Eng. Innov. Technol. SU-ICEIT, (2016) 162–168.
[10] M. Rundo and A. Corvaglia; Lumped Parameters Model of a Crescent Pump; Energies, vol. 9, no. 11, (2016) 876–899.
[11] W. Gutbrodt; Druckpulsation von Außen-und Innenzahnradpumpen und deren Auswirkungen auf das Pumpenaggregat; O+P Ölhydraulik und Pneumatik 19, Nr.4, (1975) 250–257.
[12] S. Schwarzer and P. T. Körner; Leise Innenzahnradpumpen durch Reduzierung von „Quetschöl“ – theoretische und experimentelle; O+P Ölhydraulik und Pneumatik 44 Nr.1, vol. 3, (2016) 62–67.
[13] S. Admad; Rotor Casing Contact Phenomenon in Rotor Dynamics - Literature Survey; Journal of Vibration Control, Vol. 16, No. 9, (2010) 1369–1377.