UV-LED Assisted Ethanol Sensing Properties of NiO-Modified ZnO Thick Film at Low Temperatures

Duc Tho Do1, , Thi Nu Nguyen1, Huu Phuoc Luong1, Xuan Hien Vu1, Duc Vuong Dang1, Duc Chien Nguyen1
1 Hanoi University of Science and Technology – No. 1, Dai Co Viet Str., Hai Ba Trung, Ha Noi, Viet Nam

Main Article Content

Abstract

Sensor based on thick film of ZnO hollow microspheres with average thickness about 200 μm were obtained by spin-coating technique. The surface of the film was modified by NiO through dropwise solution of Ni(NO₃)₂ onto the film to reach mass ratio of Ni(NO₃)₂ to ZnO of 1 %. Subsequently, the obtained film was calcined at 500 °C for 2 h. Upon calcination, Ni(NO₃)₂ would reduce to NiO. Ethanol sensing properties of sensor film were investigated and compared with those of pristine ZnO hollow microspheres. The measurement was carried out under illumination of UV-LED (365 nm, 3 W) at temperatures from 75 °C to 125 °C and ethanol vapor concentration levels 125 to 1500 ppm. The results show that the sensor with NiO-modified surface reaches significantly high response (6.5) toward 1500 ppm of ethanol vapor at 100 °C.

Article Details

References

[1] P. Song, J. Hu, H. Quin, L. Zhang, K. An; Preparation and ethanol sensitivity of nanocrystalline La₀.₇Pb₀.₃FeO₃-based gas sensor; Mater. Lett. 58 (2004) 2610–2613.
[2] S.J. Young, Z.D. Lin, C.H. Hsiao, C.S. Huang; Ethanol gas sensors composed of carbon nanotubes with adsorbed gold nanoparticles; Int. J. Electrochem. Sci. 7 (2012) 11634–11640.
[3] X. Song, Zh. Wang, Y. Liu, C. Wang, L. Li; A highly sensitive ethanol sensor based on mesoporous ZnO-SnO₂ nanofiber; Nanotechnology 20 (2009) 75501.
[4] P. Song, Q. Wang, Z. Yang; Acetone sensing characteristics of ZnO hollow spheres prepared by one-pot hydrothermal reaction; Mater. Lett. 86 (2012) 168–170.
[5] K. Mirabbaszadeh, M. Mehrabian; Synthesis and properties of ZnO nanorods as ethanol gas sensors; Phys. Scr. 85 (2012).
[6] O. Lupan, Q. Chai, L. Chow; Microelectronic Engineering Novel hydrogen gas sensor based on single ZnO nanorod; Microelectron. Eng. 85 (2008) 2220–2225.
[7] S. Malaysiana, P. Batang, N. Zno, K. Hirdetorma, S. Rendah, S.E. Glukosa, M. Zno; Formation of ZnO Nanorods via Low Temperature Hydrothermal Method for Enzymatic Glucose Sensor; 45 (2016) 1221–1225.
[8] L. Luo, Y. Zhang, S.S. Mao, L. Lin; Fabrication and characterization of ZnO nanowires based UV photodiodes; Sens. Actuators A 127 (2006) 201–206.
[9] D. Raoufi; Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method; Renewable Energy 50 (2013) 932–937.
[10] G. Wu, J. Zhang, X. Wang, J. Liao, H. Xia, S.A. Akbar, J. Li, S. Lin, X. Li, J. Wang; Hierarchical structured TiO₂ nano-tubes for formaldehyde sensing; Ceram. Int. 38 (2012) 6341–6347.
[11] R. Jaisutti, M. Lee, J. Kim, S. Choi, J. Ha, J. Kim, H. Kim, S.K. Park, Y. Kim; Ultra-Sensitive Room-Temperature Operable Gas Sensors using p-Type Na : ZnO Nanoflowers for Diabetes Detection; ACS Appl. Mater. Interfaces 9 (2017) 8796–8804.
[12] S.T. Shishiyanu, T.S. Shishiyanu, O.I. Lupan; Sensing characteristics of tin-doped ZnO thin films as NO₂ gas sensor; Sens. Actuators B 107 (2005) 379–386.
[13] L.C. Tien, P.W. Sadik, D.P. Norton, L.F. Voss, S.J. Pearton, I.C. Tien, P.W. Sadik, D.P. Norton, L.F. Voss, S.J. Pearton; Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods; Appl. Phys. Lett. 87 (2005) 222106-1–4.
[14] S. Fan, A.K. Srivastava, V.P. Dravid, S. Fan, A.K. Srivastava, V.P. Dravid; UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO; Appl. Phys. Lett. 95 (2009) 142106-1–3.
[15] J. Lee, J. Kim, A. Mirzaei, H.W. Kim, S.S. Kim; Significant Enhancement of Hydrogen-Sensing Properties of ZnO Nanofibers through NiO Loading; Nanomaterials 8 (2018) 902.
[16] M. Bonomo; Synthesis and characterization of NiO nanostructures: a review; J nanoprart Res 20 (2018) 222.
[17] C. Hong, Q. Zhou, Z. Lu, A. Umar, R. Kumar, Z. Wei, X. Wu, L. Xu, S.H. Mors; Ag-doped ZnO nanoellipsoids based highly sensitive gas sensor; Mater. Express 7 (2017) 380–388.
[18] L. Zhang, J. Huang, D. Ma, Z. Zhu, S. Wang; Preparation and gas sensing properties of ZnO hollow microspheres; J. Sol-Gel Sci. Technol. (2016) 0–1.
[19] B.P.J.D.L. Costello, R.J. Ewen, N.M. Ratcliffe, M. Richards; Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles; Sens. Actuators B 134 (2008) 945–952.
[20] P. Zhang, G. Pan, B. Zhang, J. Zhen, Y. Sun; High Sensitivity Ethanol Gas Sensor Based on Sn-doped ZnO Under Visible Light Irradiation at Low Temperature; Materials Research 17 (2014) 817–822.
[21] D. Li, Y. Zhang, D. Liu, S. Yao, F. Liu, B. Wang, P. Sun, Y. Gao, X. Chuai, G. Lu; Hierarchical core/shell ZnO/NiO nanoheterojunctions synthesized by ultrasonic spray pyrolysis and their gas-sensing performance; CrystEngComm 18 (2016) 8101–8107.
[22] N. Gyu, I. Hwang, H. Kim, J. Lee, I. Kim; Gas sensing properties of p-type hollow NiO hemispheres prepared by polymeric colloidal templating method; Sensors & Actuators B. Chem. 155 (2011) 366–371.
[23] L. Xu, R. Zheng, S. Liu, J. Song, J. Chen, B. Dong, H. Song; NiO@ZnO Heterostructured Nanotubes: Coelectrospinning Fabrication, Characterization, and Highly Enhanced Gas Sensing Properties; Inorg. Chem. 51 (2012) 7733–7740.
[24] G. Sun, J.K. Lee, W.I. Lee, R.P. Dwivedi, C. Lee, T. Ko; Ethanol Sensing Properties and Dominant Sensing Mechanism of NiO-Decorated SnO₂ Nanorod Sensors; Electron. Mater. Lett. 13 (2017) 260–269.