UV-LED Assisted Ethanol Sensing Properties of NiO-Modified ZnO Thick Film at Low Temperatures
Main Article Content
Abstract
Sensor based on thick film of ZnO hollow microspheres with average thickness about 200 μm were obtained by spin-coating technique. The surface of the film was modified by NiO through dropwise solution of Ni(NO₃)₂ onto the film to reach mass ratio of Ni(NO₃)₂ to ZnO of 1 %. Subsequently, the obtained film was calcined at 500 °C for 2 h. Upon calcination, Ni(NO₃)₂ would reduce to NiO. Ethanol sensing properties of sensor film were investigated and compared with those of pristine ZnO hollow microspheres. The measurement was carried out under illumination of UV-LED (365 nm, 3 W) at temperatures from 75 °C to 125 °C and ethanol vapor concentration levels 125 to 1500 ppm. The results show that the sensor with NiO-modified surface reaches significantly high response (6.5) toward 1500 ppm of ethanol vapor at 100 °C.
Keywords
Ethanol sensing properties, UV-LED assisted, Low temperatures, ZnO hollow microspheres
Article Details
References
[1] P. Song, J. Hu, H. Quin, L. Zhang, K. An; Preparation and ethanol sensitivity of nanocrystalline La₀.₇Pb₀.₃FeO₃-based gas sensor; Mater. Lett. 58 (2004) 2610–2613.
[2] S.J. Young, Z.D. Lin, C.H. Hsiao, C.S. Huang; Ethanol gas sensors composed of carbon nanotubes with adsorbed gold nanoparticles; Int. J. Electrochem. Sci. 7 (2012) 11634–11640.
[3] X. Song, Zh. Wang, Y. Liu, C. Wang, L. Li; A highly sensitive ethanol sensor based on mesoporous ZnO-SnO₂ nanofiber; Nanotechnology 20 (2009) 75501.
[4] P. Song, Q. Wang, Z. Yang; Acetone sensing characteristics of ZnO hollow spheres prepared by one-pot hydrothermal reaction; Mater. Lett. 86 (2012) 168–170.
[5] K. Mirabbaszadeh, M. Mehrabian; Synthesis and properties of ZnO nanorods as ethanol gas sensors; Phys. Scr. 85 (2012).
[6] O. Lupan, Q. Chai, L. Chow; Microelectronic Engineering Novel hydrogen gas sensor based on single ZnO nanorod; Microelectron. Eng. 85 (2008) 2220–2225.
[7] S. Malaysiana, P. Batang, N. Zno, K. Hirdetorma, S. Rendah, S.E. Glukosa, M. Zno; Formation of ZnO Nanorods via Low Temperature Hydrothermal Method for Enzymatic Glucose Sensor; 45 (2016) 1221–1225.
[8] L. Luo, Y. Zhang, S.S. Mao, L. Lin; Fabrication and characterization of ZnO nanowires based UV photodiodes; Sens. Actuators A 127 (2006) 201–206.
[9] D. Raoufi; Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method; Renewable Energy 50 (2013) 932–937.
[10] G. Wu, J. Zhang, X. Wang, J. Liao, H. Xia, S.A. Akbar, J. Li, S. Lin, X. Li, J. Wang; Hierarchical structured TiO₂ nano-tubes for formaldehyde sensing; Ceram. Int. 38 (2012) 6341–6347.
[11] R. Jaisutti, M. Lee, J. Kim, S. Choi, J. Ha, J. Kim, H. Kim, S.K. Park, Y. Kim; Ultra-Sensitive Room-Temperature Operable Gas Sensors using p-Type Na : ZnO Nanoflowers for Diabetes Detection; ACS Appl. Mater. Interfaces 9 (2017) 8796–8804.
[12] S.T. Shishiyanu, T.S. Shishiyanu, O.I. Lupan; Sensing characteristics of tin-doped ZnO thin films as NO₂ gas sensor; Sens. Actuators B 107 (2005) 379–386.
[13] L.C. Tien, P.W. Sadik, D.P. Norton, L.F. Voss, S.J. Pearton, I.C. Tien, P.W. Sadik, D.P. Norton, L.F. Voss, S.J. Pearton; Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods; Appl. Phys. Lett. 87 (2005) 222106-1–4.
[14] S. Fan, A.K. Srivastava, V.P. Dravid, S. Fan, A.K. Srivastava, V.P. Dravid; UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO; Appl. Phys. Lett. 95 (2009) 142106-1–3.
[15] J. Lee, J. Kim, A. Mirzaei, H.W. Kim, S.S. Kim; Significant Enhancement of Hydrogen-Sensing Properties of ZnO Nanofibers through NiO Loading; Nanomaterials 8 (2018) 902.
[16] M. Bonomo; Synthesis and characterization of NiO nanostructures: a review; J nanoprart Res 20 (2018) 222.
[17] C. Hong, Q. Zhou, Z. Lu, A. Umar, R. Kumar, Z. Wei, X. Wu, L. Xu, S.H. Mors; Ag-doped ZnO nanoellipsoids based highly sensitive gas sensor; Mater. Express 7 (2017) 380–388.
[18] L. Zhang, J. Huang, D. Ma, Z. Zhu, S. Wang; Preparation and gas sensing properties of ZnO hollow microspheres; J. Sol-Gel Sci. Technol. (2016) 0–1.
[19] B.P.J.D.L. Costello, R.J. Ewen, N.M. Ratcliffe, M. Richards; Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles; Sens. Actuators B 134 (2008) 945–952.
[20] P. Zhang, G. Pan, B. Zhang, J. Zhen, Y. Sun; High Sensitivity Ethanol Gas Sensor Based on Sn-doped ZnO Under Visible Light Irradiation at Low Temperature; Materials Research 17 (2014) 817–822.
[21] D. Li, Y. Zhang, D. Liu, S. Yao, F. Liu, B. Wang, P. Sun, Y. Gao, X. Chuai, G. Lu; Hierarchical core/shell ZnO/NiO nanoheterojunctions synthesized by ultrasonic spray pyrolysis and their gas-sensing performance; CrystEngComm 18 (2016) 8101–8107.
[22] N. Gyu, I. Hwang, H. Kim, J. Lee, I. Kim; Gas sensing properties of p-type hollow NiO hemispheres prepared by polymeric colloidal templating method; Sensors & Actuators B. Chem. 155 (2011) 366–371.
[23] L. Xu, R. Zheng, S. Liu, J. Song, J. Chen, B. Dong, H. Song; NiO@ZnO Heterostructured Nanotubes: Coelectrospinning Fabrication, Characterization, and Highly Enhanced Gas Sensing Properties; Inorg. Chem. 51 (2012) 7733–7740.
[24] G. Sun, J.K. Lee, W.I. Lee, R.P. Dwivedi, C. Lee, T. Ko; Ethanol Sensing Properties and Dominant Sensing Mechanism of NiO-Decorated SnO₂ Nanorod Sensors; Electron. Mater. Lett. 13 (2017) 260–269.
[2] S.J. Young, Z.D. Lin, C.H. Hsiao, C.S. Huang; Ethanol gas sensors composed of carbon nanotubes with adsorbed gold nanoparticles; Int. J. Electrochem. Sci. 7 (2012) 11634–11640.
[3] X. Song, Zh. Wang, Y. Liu, C. Wang, L. Li; A highly sensitive ethanol sensor based on mesoporous ZnO-SnO₂ nanofiber; Nanotechnology 20 (2009) 75501.
[4] P. Song, Q. Wang, Z. Yang; Acetone sensing characteristics of ZnO hollow spheres prepared by one-pot hydrothermal reaction; Mater. Lett. 86 (2012) 168–170.
[5] K. Mirabbaszadeh, M. Mehrabian; Synthesis and properties of ZnO nanorods as ethanol gas sensors; Phys. Scr. 85 (2012).
[6] O. Lupan, Q. Chai, L. Chow; Microelectronic Engineering Novel hydrogen gas sensor based on single ZnO nanorod; Microelectron. Eng. 85 (2008) 2220–2225.
[7] S. Malaysiana, P. Batang, N. Zno, K. Hirdetorma, S. Rendah, S.E. Glukosa, M. Zno; Formation of ZnO Nanorods via Low Temperature Hydrothermal Method for Enzymatic Glucose Sensor; 45 (2016) 1221–1225.
[8] L. Luo, Y. Zhang, S.S. Mao, L. Lin; Fabrication and characterization of ZnO nanowires based UV photodiodes; Sens. Actuators A 127 (2006) 201–206.
[9] D. Raoufi; Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method; Renewable Energy 50 (2013) 932–937.
[10] G. Wu, J. Zhang, X. Wang, J. Liao, H. Xia, S.A. Akbar, J. Li, S. Lin, X. Li, J. Wang; Hierarchical structured TiO₂ nano-tubes for formaldehyde sensing; Ceram. Int. 38 (2012) 6341–6347.
[11] R. Jaisutti, M. Lee, J. Kim, S. Choi, J. Ha, J. Kim, H. Kim, S.K. Park, Y. Kim; Ultra-Sensitive Room-Temperature Operable Gas Sensors using p-Type Na : ZnO Nanoflowers for Diabetes Detection; ACS Appl. Mater. Interfaces 9 (2017) 8796–8804.
[12] S.T. Shishiyanu, T.S. Shishiyanu, O.I. Lupan; Sensing characteristics of tin-doped ZnO thin films as NO₂ gas sensor; Sens. Actuators B 107 (2005) 379–386.
[13] L.C. Tien, P.W. Sadik, D.P. Norton, L.F. Voss, S.J. Pearton, I.C. Tien, P.W. Sadik, D.P. Norton, L.F. Voss, S.J. Pearton; Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods; Appl. Phys. Lett. 87 (2005) 222106-1–4.
[14] S. Fan, A.K. Srivastava, V.P. Dravid, S. Fan, A.K. Srivastava, V.P. Dravid; UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO; Appl. Phys. Lett. 95 (2009) 142106-1–3.
[15] J. Lee, J. Kim, A. Mirzaei, H.W. Kim, S.S. Kim; Significant Enhancement of Hydrogen-Sensing Properties of ZnO Nanofibers through NiO Loading; Nanomaterials 8 (2018) 902.
[16] M. Bonomo; Synthesis and characterization of NiO nanostructures: a review; J nanoprart Res 20 (2018) 222.
[17] C. Hong, Q. Zhou, Z. Lu, A. Umar, R. Kumar, Z. Wei, X. Wu, L. Xu, S.H. Mors; Ag-doped ZnO nanoellipsoids based highly sensitive gas sensor; Mater. Express 7 (2017) 380–388.
[18] L. Zhang, J. Huang, D. Ma, Z. Zhu, S. Wang; Preparation and gas sensing properties of ZnO hollow microspheres; J. Sol-Gel Sci. Technol. (2016) 0–1.
[19] B.P.J.D.L. Costello, R.J. Ewen, N.M. Ratcliffe, M. Richards; Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles; Sens. Actuators B 134 (2008) 945–952.
[20] P. Zhang, G. Pan, B. Zhang, J. Zhen, Y. Sun; High Sensitivity Ethanol Gas Sensor Based on Sn-doped ZnO Under Visible Light Irradiation at Low Temperature; Materials Research 17 (2014) 817–822.
[21] D. Li, Y. Zhang, D. Liu, S. Yao, F. Liu, B. Wang, P. Sun, Y. Gao, X. Chuai, G. Lu; Hierarchical core/shell ZnO/NiO nanoheterojunctions synthesized by ultrasonic spray pyrolysis and their gas-sensing performance; CrystEngComm 18 (2016) 8101–8107.
[22] N. Gyu, I. Hwang, H. Kim, J. Lee, I. Kim; Gas sensing properties of p-type hollow NiO hemispheres prepared by polymeric colloidal templating method; Sensors & Actuators B. Chem. 155 (2011) 366–371.
[23] L. Xu, R. Zheng, S. Liu, J. Song, J. Chen, B. Dong, H. Song; NiO@ZnO Heterostructured Nanotubes: Coelectrospinning Fabrication, Characterization, and Highly Enhanced Gas Sensing Properties; Inorg. Chem. 51 (2012) 7733–7740.
[24] G. Sun, J.K. Lee, W.I. Lee, R.P. Dwivedi, C. Lee, T. Ko; Ethanol Sensing Properties and Dominant Sensing Mechanism of NiO-Decorated SnO₂ Nanorod Sensors; Electron. Mater. Lett. 13 (2017) 260–269.