Study of the Synthesis Silver Nanoparticles and the Particle Size Effect on Surface-Enhanced Raman Scattering Spectroscopy of Methylene Blue
Main Article Content
Abstract
Surface-Enhanced Raman Scattering (SERS) is a modern technique that strongly enhances the Raman scattering signal of the analytes. The SERS phenomenon was explained by the localized surface plasmon resonance (LSPR) of the Raman substrate. In this report, silver nanoparticles one of the plasmonic structures were used to enhance the Raman signal of the methylene blue dye up to 10⁸ times. Especially, the highest Raman signal enhancement was observed when the plasmon resonance wavelength was close to the laser excitation wavelength. Thus, the silver nanoparticles-based SERS technique allows for the ultra-sensitive detection without destroying the sample which is suitable for point of care testing and biomedical analysis.
Keywords
SERS, silver nanoparticles, size effect
Article Details
References
[1] M. Moskovits; Surface-enhanced spectroscopy, Rev. Mod. Phys. 57 (1985) 783-826.
[2] M. Fleischmann, P.J. Hendra, A.J. McQuillan; Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett. 26 (1974) 163-166.
[3] S. Schlücker; SERS Microscopy: Nanoparticle Probes and Biomedical Applications, ChemPhysChem 10 (2009) 1344-1354.
[4] A. Merlen, F. Laguigne-Labarhert, E. Harté; Surface-Enhanced Raman and Fluorescence Spectroscopy of Dye Molecules Deposited on Nanostructured Gold Surfaces, J. Phys. Chem. C 114 (2010) 12878-12884.
[5] G. Q. Wallace, F. Pashaee, R. Hou, M. Tatababei, F. Laguigne-Labarhert; Plasmonic nanostructures for enhanced Raman spectroscopy: SERS and TERS of different silver nanostructures deposited on silicon, Adv. Nat. Sci.: Nanosci. Nanotech. 6 (2015) 035012.
[6] L. Truc Quynh Ngan, C. Tuan Anh, D. Tran Cao; Low-concentration organic molecules detection via surface-enhanced Raman spectroscopy effect using Ag nanoparticles-coated silicon nanowire arrays, Adv. Nat. Sci.: Nanosci. Nanotech. 4 (2013) 015018.
[7] T.T.K. Chi, N.T. Le, B.T.T. Hien, D.Q. Trung, N.Q. Liem; Preparation of SERS Substrates for the Detection of Organic Molecules at Low Concentration, Commun. Phys. 26 (2016) 261-268.
[8] L.T. Huy, L.T. Tam, T. Van Son, N.D. Cuong, M.H. Nam, L.K. Vinh, T.Q. Huy, D.T. Ngo, V.N. Phan, A.T. Le; Photochemical Decoration of Silver Nanocrystals on Magnetic MnFe₂O₄ Nanoparticles and Their Applications in Antibacterial Agents and SERS-Based Detection, J. Electron. Mater. 46 (2017) 3412-3421.
[9] M. Nguyen, X. Sun, E. Lacaze, P.M. Winkler, A. Hohenau, J.R. Krenn, C. Bourdillon, A. Lamouri, J. Grand, G. Lévi, L. Boubekeur-Lecaque, C. Mangeney, N. Félidj; Engineering Thermoswitchable Lithographic Hybrid Gold Nanorods as Plasmonic Devices for Sensing and Active Plasmonic Applications, ACS Photonics 2 (2015) 1199-1208.
[10] M. Nguyen, N. Félidj, C. Mangeney; Looking for Synergies in Molecular Plasmonics through Hybrid Thermoresponsive Nanostructures, Chem. Mater. 28 (2016) 3564-3577.
[11] R.X. He, R. Liang, P. Peng, Y. Norman Zhou; Effect of the size of silver nanoparticles on SERS signal enhancement, J. Nanopart. Res. (2017).
[12] S. Kundu, W. Dai, Y. Chen, L. Ma, Y. Yue, A.M. Sinyukov, H. Liang; Shape-selective catalysis and surface enhanced Raman scattering studies using Ag nanocubes, nanospheres and aggregated anisotropic nanostructures, J. Colloid Interface Sci. 498 (2017) 248-262.
[13] C.R. Rekha, V.U. Nayar, K.G. Copchandran; Synthesis of highly stable silver nanorods and their application as SERS substrates, J. Sci. Adv. Mater. Dev. 3 (2018) 196-205.
[14] J. Tang, M. Tu, T. Jiang, E. Wang, C. Ge, Z. Chen; A green approach for the synthesis of silver dendrites and their superior SERS performance, Optik 136 (2017) 244-248.
[15] N.V. Tân, N.T. Bình; Nghiên cứu hiệu ứng tán xạ Raman tăng cường bề mặt (SERS) trên cấu trúc hạt nano kim loại, Kỷ yếu hội nghị khoa học Trường ĐH Khoa học Tự nhiên, ĐH Quốc Gia Hà Nội (2011) 52-56.
[16] D. Tran Cao, L. Truc Quynh Ngan, C. Tuan Anh, N. Ngoc Hai, K. Ngoc Minh, L. Thi Thuy, L. Van Vu; Trace detection of herbicides by SERS technique, using SERS-active substrates fabricated from different silver nanostructures deposited on silicon, Adv. Nat. Sci.: Nanosci. Nanotech. 6 (2015) 035012.
[17] N.X. Dinh, T.Q. Huy, L. Van Vu, L.T. Tam, A.T. Le; Multiwalled carbon nanotubes/silver nanocomposite as effective SERS platform for detection of methylene blue dye in water, J. Sci. Adv. Mater. Dev. 1 (2016) 84-89.
[18] A. Mirzaei, K. Janghorban, B. Hashemi, M. Bonyani, S.G. Leonardi, G. Neri; Characterization and optical studies of PVP-capped silver nanoparticles, J. Nanostructure Chem. 7 (2016) 37-46.
[19] G.N. Xiao, S.Q. Man; Surface-enhanced Raman scattering of methylene blue dye adsorbed on cap-shaped silver nanoparticles, Chem. Phys. Lett. 447 (2007) 305-309.
[20] C. Li, Y. Huang, K. Lai, B.A. Rasco, Y. Fan; Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Raman spectroscopy, Food Control 65 (2016) 99-105.
[21] P.N. Sisco, C.J. Murphy; Surface-Coverage Dependence of Surface-Enhanced Raman Scattering from Gold Nanocubes on Self-Assembled Monolayers of Analyte, The Journal of Physical Chemistry A 113 (2009) 3973-3978.
[2] M. Fleischmann, P.J. Hendra, A.J. McQuillan; Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett. 26 (1974) 163-166.
[3] S. Schlücker; SERS Microscopy: Nanoparticle Probes and Biomedical Applications, ChemPhysChem 10 (2009) 1344-1354.
[4] A. Merlen, F. Laguigne-Labarhert, E. Harté; Surface-Enhanced Raman and Fluorescence Spectroscopy of Dye Molecules Deposited on Nanostructured Gold Surfaces, J. Phys. Chem. C 114 (2010) 12878-12884.
[5] G. Q. Wallace, F. Pashaee, R. Hou, M. Tatababei, F. Laguigne-Labarhert; Plasmonic nanostructures for enhanced Raman spectroscopy: SERS and TERS of different silver nanostructures deposited on silicon, Adv. Nat. Sci.: Nanosci. Nanotech. 6 (2015) 035012.
[6] L. Truc Quynh Ngan, C. Tuan Anh, D. Tran Cao; Low-concentration organic molecules detection via surface-enhanced Raman spectroscopy effect using Ag nanoparticles-coated silicon nanowire arrays, Adv. Nat. Sci.: Nanosci. Nanotech. 4 (2013) 015018.
[7] T.T.K. Chi, N.T. Le, B.T.T. Hien, D.Q. Trung, N.Q. Liem; Preparation of SERS Substrates for the Detection of Organic Molecules at Low Concentration, Commun. Phys. 26 (2016) 261-268.
[8] L.T. Huy, L.T. Tam, T. Van Son, N.D. Cuong, M.H. Nam, L.K. Vinh, T.Q. Huy, D.T. Ngo, V.N. Phan, A.T. Le; Photochemical Decoration of Silver Nanocrystals on Magnetic MnFe₂O₄ Nanoparticles and Their Applications in Antibacterial Agents and SERS-Based Detection, J. Electron. Mater. 46 (2017) 3412-3421.
[9] M. Nguyen, X. Sun, E. Lacaze, P.M. Winkler, A. Hohenau, J.R. Krenn, C. Bourdillon, A. Lamouri, J. Grand, G. Lévi, L. Boubekeur-Lecaque, C. Mangeney, N. Félidj; Engineering Thermoswitchable Lithographic Hybrid Gold Nanorods as Plasmonic Devices for Sensing and Active Plasmonic Applications, ACS Photonics 2 (2015) 1199-1208.
[10] M. Nguyen, N. Félidj, C. Mangeney; Looking for Synergies in Molecular Plasmonics through Hybrid Thermoresponsive Nanostructures, Chem. Mater. 28 (2016) 3564-3577.
[11] R.X. He, R. Liang, P. Peng, Y. Norman Zhou; Effect of the size of silver nanoparticles on SERS signal enhancement, J. Nanopart. Res. (2017).
[12] S. Kundu, W. Dai, Y. Chen, L. Ma, Y. Yue, A.M. Sinyukov, H. Liang; Shape-selective catalysis and surface enhanced Raman scattering studies using Ag nanocubes, nanospheres and aggregated anisotropic nanostructures, J. Colloid Interface Sci. 498 (2017) 248-262.
[13] C.R. Rekha, V.U. Nayar, K.G. Copchandran; Synthesis of highly stable silver nanorods and their application as SERS substrates, J. Sci. Adv. Mater. Dev. 3 (2018) 196-205.
[14] J. Tang, M. Tu, T. Jiang, E. Wang, C. Ge, Z. Chen; A green approach for the synthesis of silver dendrites and their superior SERS performance, Optik 136 (2017) 244-248.
[15] N.V. Tân, N.T. Bình; Nghiên cứu hiệu ứng tán xạ Raman tăng cường bề mặt (SERS) trên cấu trúc hạt nano kim loại, Kỷ yếu hội nghị khoa học Trường ĐH Khoa học Tự nhiên, ĐH Quốc Gia Hà Nội (2011) 52-56.
[16] D. Tran Cao, L. Truc Quynh Ngan, C. Tuan Anh, N. Ngoc Hai, K. Ngoc Minh, L. Thi Thuy, L. Van Vu; Trace detection of herbicides by SERS technique, using SERS-active substrates fabricated from different silver nanostructures deposited on silicon, Adv. Nat. Sci.: Nanosci. Nanotech. 6 (2015) 035012.
[17] N.X. Dinh, T.Q. Huy, L. Van Vu, L.T. Tam, A.T. Le; Multiwalled carbon nanotubes/silver nanocomposite as effective SERS platform for detection of methylene blue dye in water, J. Sci. Adv. Mater. Dev. 1 (2016) 84-89.
[18] A. Mirzaei, K. Janghorban, B. Hashemi, M. Bonyani, S.G. Leonardi, G. Neri; Characterization and optical studies of PVP-capped silver nanoparticles, J. Nanostructure Chem. 7 (2016) 37-46.
[19] G.N. Xiao, S.Q. Man; Surface-enhanced Raman scattering of methylene blue dye adsorbed on cap-shaped silver nanoparticles, Chem. Phys. Lett. 447 (2007) 305-309.
[20] C. Li, Y. Huang, K. Lai, B.A. Rasco, Y. Fan; Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Raman spectroscopy, Food Control 65 (2016) 99-105.
[21] P.N. Sisco, C.J. Murphy; Surface-Coverage Dependence of Surface-Enhanced Raman Scattering from Gold Nanocubes on Self-Assembled Monolayers of Analyte, The Journal of Physical Chemistry A 113 (2009) 3973-3978.