Measuring Heart Rate by Using the Contact Free Video Imaging on a Built-In Camera of a Smartphone
Main Article Content
Abstract
Digital camera is now becoming a very popular and useful clinical tool for measuring the human vital signs such as cardiac pulse, breath rate, or blood pressure through noncontact video recording with the signal extracted from objects such as blood vessel, head motion, or human arm, etc. In this paper, we explore the potential that the reliable heart rate can be measured remotely by the facial video recorded using smartphone camera. The accuracy of the estimated heart rate was evaluated by comparing with the heart rate measured directly from the reference digital electrocardiogram (ECG). We also present our preliminary results of the heart rates measured with different lighting conditions, spectral components, facial parts, and alcoholic volume.
Keywords
Cardiac pulse, Photoplethysmography (PPG), ICA, fast Fourier transform (FFT), cardiovascular
Article Details
References
[1] G. Duran, I. Tapiero, G. A. Michael; Resting heart rate: A physiological predictor of lie detection ability; Physiol Behav. 186 (2018) 10-15.
[2] T. Penzel, J. W. Kantehardt, R. P. Bartsch, M. Riedl, J. F. Kraemer, N. Wessel, C. Garcia, M. Glos, I. Fietze, C. Schobel; Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography; Front Physiol. 7 (2016) 460.
[3] M. Gutkin, J. M. Stewart; Orthostatic Circulatory Disorders: From Nosology to Nuts and Bolts; Am. J. Hypertens. 29 (2016) 1009-1019.
[4] S. Cook, M. Togni, M. C. Schaub, P. Wenaweser, and O. M. Hess; High heart rate: a cardiovascular risk factor?; Eur. Heart J. 27 (2006) 2387-2393.
[5] S. Rhee, B. H. Yang, and H. H. Asada; Artifact-resistant power-efficient design of finger-ring plethysmographic sensors; IEEE Trans. Biomed. Eng. 48 (2001) 795-805.
[6] T. Aoyagi; Pulse oximetry: its invention, theory, and future; J. Anesth. 17 (2003) 259-266.
[7] J. W. Severinghaus, P. B. Astrup; History of blood gas analysis. VI. Oximetry; J. Clin. Monit. 2 (1986) 270-288.
[8] W. Verkruysse, L. O. Svaasand, J. S. Nelson; Remote plethysmographic imaging using ambient light; Opt. Express. 16 (2008) 21434-21445.
[9] I. Pavlidis, J. Dowdall, N. Sun, C. Puri, J. Fei, M. Garbey; Interacting with human physiology; Comput. Vis. Image Understand. 108 (2007) 150-170.
[10] M. Garbey, N. Sun, A. Merla, I. Pavlidis; Contact-free measurement of cardiac pulse based on the analysis of thermal imagery; IEEE Trans. Biomed. Eng. 54 (2007) 1418-1426.
[11] G. Balakrishnan, F. Durand, J. Guttag; Detecting pulse from head motions in video; In CVPR. (2013).
[12] K. Humphreys, T. Ward, C. Markham; Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry; Rev. Sci. Instrum. 78 (2007) 044304.
[13] S. Hu, J. Zheng, V. Chouliaras, R. Summers; Feasibility of imaging photoplethysmography; in Proceedings of IEEE Conference on BioMedical Engineering and Informatics. (2008) 72-75.
[14] F. P. Wieringa, F. Mastik, A. F. van der Steen; Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology; Ann. Biomed. Eng. 33 (2005) 1034-1041.
[15] J. Fei, I. Pavlidis; Thermistor at a Distance: Unobtrusive Measurement of Breathing; IEEE Trans. Biomed. Eng. 57 (2010) 988-998.
[16] M. P. Chawla, H. K. Verma, V. Kumar; Artifacts and noise removal in electrocardiograms using independent component analysis; Int. J. Cardiol. 129 (2008) 278-281.
[17] J. F. Cardoso; Multidimensional independent component analysis; in Proceedings of IEEE Conference on Acoustics, Speech and Signal Processing. (1998) 1941-1944.
[18] Y. Jianchu, S. Warren; A Short Study to Assess the Potential of Independent Component Analysis for Motion Artifact Separation in Wearable Pulse Oximeter Signals; in Proceedings of IEEE Conference of the Engineering in Medicine and Biology Society. (2005) 3585-3588.
[19] B. S. Kim, S. K. Yoo; Motion artifact reduction in photoplethysmography using independent component analysis; IEEE Trans. Biomed. Eng. 53 (2006) 566-568.
[20] D. D. Royston, R. S. Poston, S. A. Prahl; Optical Properties of Scattering and Absorbing Materials Used in the Development of Optical Phantoms at 1064 nm; J. Biomedical Optics. 1 (1996) 110-116.
[21] C. Takano, Y. Ohta; Heart rate measurement based on a time-lapse image; Med. Eng. Phys. 29 (2007) 853-857.
[2] T. Penzel, J. W. Kantehardt, R. P. Bartsch, M. Riedl, J. F. Kraemer, N. Wessel, C. Garcia, M. Glos, I. Fietze, C. Schobel; Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography; Front Physiol. 7 (2016) 460.
[3] M. Gutkin, J. M. Stewart; Orthostatic Circulatory Disorders: From Nosology to Nuts and Bolts; Am. J. Hypertens. 29 (2016) 1009-1019.
[4] S. Cook, M. Togni, M. C. Schaub, P. Wenaweser, and O. M. Hess; High heart rate: a cardiovascular risk factor?; Eur. Heart J. 27 (2006) 2387-2393.
[5] S. Rhee, B. H. Yang, and H. H. Asada; Artifact-resistant power-efficient design of finger-ring plethysmographic sensors; IEEE Trans. Biomed. Eng. 48 (2001) 795-805.
[6] T. Aoyagi; Pulse oximetry: its invention, theory, and future; J. Anesth. 17 (2003) 259-266.
[7] J. W. Severinghaus, P. B. Astrup; History of blood gas analysis. VI. Oximetry; J. Clin. Monit. 2 (1986) 270-288.
[8] W. Verkruysse, L. O. Svaasand, J. S. Nelson; Remote plethysmographic imaging using ambient light; Opt. Express. 16 (2008) 21434-21445.
[9] I. Pavlidis, J. Dowdall, N. Sun, C. Puri, J. Fei, M. Garbey; Interacting with human physiology; Comput. Vis. Image Understand. 108 (2007) 150-170.
[10] M. Garbey, N. Sun, A. Merla, I. Pavlidis; Contact-free measurement of cardiac pulse based on the analysis of thermal imagery; IEEE Trans. Biomed. Eng. 54 (2007) 1418-1426.
[11] G. Balakrishnan, F. Durand, J. Guttag; Detecting pulse from head motions in video; In CVPR. (2013).
[12] K. Humphreys, T. Ward, C. Markham; Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry; Rev. Sci. Instrum. 78 (2007) 044304.
[13] S. Hu, J. Zheng, V. Chouliaras, R. Summers; Feasibility of imaging photoplethysmography; in Proceedings of IEEE Conference on BioMedical Engineering and Informatics. (2008) 72-75.
[14] F. P. Wieringa, F. Mastik, A. F. van der Steen; Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology; Ann. Biomed. Eng. 33 (2005) 1034-1041.
[15] J. Fei, I. Pavlidis; Thermistor at a Distance: Unobtrusive Measurement of Breathing; IEEE Trans. Biomed. Eng. 57 (2010) 988-998.
[16] M. P. Chawla, H. K. Verma, V. Kumar; Artifacts and noise removal in electrocardiograms using independent component analysis; Int. J. Cardiol. 129 (2008) 278-281.
[17] J. F. Cardoso; Multidimensional independent component analysis; in Proceedings of IEEE Conference on Acoustics, Speech and Signal Processing. (1998) 1941-1944.
[18] Y. Jianchu, S. Warren; A Short Study to Assess the Potential of Independent Component Analysis for Motion Artifact Separation in Wearable Pulse Oximeter Signals; in Proceedings of IEEE Conference of the Engineering in Medicine and Biology Society. (2005) 3585-3588.
[19] B. S. Kim, S. K. Yoo; Motion artifact reduction in photoplethysmography using independent component analysis; IEEE Trans. Biomed. Eng. 53 (2006) 566-568.
[20] D. D. Royston, R. S. Poston, S. A. Prahl; Optical Properties of Scattering and Absorbing Materials Used in the Development of Optical Phantoms at 1064 nm; J. Biomedical Optics. 1 (1996) 110-116.
[21] C. Takano, Y. Ohta; Heart rate measurement based on a time-lapse image; Med. Eng. Phys. 29 (2007) 853-857.