Enhancement of Superconducting Critical Temperature in Bi(Pb)-Sr-Ca-Cu-O System by Li-doping

Khac Man Nguyen1,
1 Hanoi University of Science and Technology - No. 1, Dai Co Viet Str., Hai Ba Trung, Ha Noi, Viet Nam

Main Article Content

Abstract

We have studied the superconducting transition of the high-Tₛ Li-doped Bi(Pb)-Sr-Ca-Cu-O superconductors by the DC-resistivity and AC-susceptibility measurements. It was found that Li⁺ cations are partially substituted for Cu²⁺ ions. Doping hole by Lithium substitution was supposed to take place in both OP and IP CuO₂ planes. Consequently, the hole concentration increases in the CuO₂ planes. The onset temperature of superconducting transition, Tₒₙₛₑₜ was observed to increase with Li-doping content as well as the sintering time at 850°C. We suppose that the optimum hole doping was obtained at 5% Li-doping and the sintering period of 20 days (S05B) with the value of Tₒₙₛₑₜ up to 116 K.

Article Details

References

[1] H. Maeda, and Y. Tanaka; High-Tc Bi-based Oxide Superconductors; Jpn. J. Appl. Phys. 27, L209 (1988).
[2] Kamimura, H., Ushio, H., Matsuno, S., Hamada, T.; Theory of Copper Oxide Superconductors; Springer-Verlag Berlin Heidelberg (2005) 51.
[3] G. Rietveld, S. J. Collocott, R. Driver, D. van der Marel; Doping dependence of the chemical potential in cuprate high-Tc superconductors Bi₂Sr₂CaCu₂O₁₀₊δ; Physica C 241 (1995) 273–278.
[4] M. A. van Veenendaal, G. A. Sawatzky, and W. A. Groen; Electronic structure of Bi₂Sr₂Ca₁₋ₓYₓCu₂O₈₊δ: Cu 2p x-ray-photoelectron spectra and occupied and unoccupied low-energy states; Phys. Rev. B 49 (1994) 1409–1414.
[5] Noburu Fukushima and Masahiko Yoshiki; Metal-insulator transition in Bi-Pb-Sr-Ca-Y-Cu-O caused by a change in the structural modulation; Phys. Rev. B50 (1994) 2696–2699.
[6] G. Logvenov, A. Gozar, I. Bozovic; High-Temperature Superconductivity in a Single Copper-Oxygen Plane; Science 326 (2009) 699–702.
[7] Q. Q. Liu, H. Yang, X. M. Qin, Y. Yu, and C. Q. Jin; Enhancement of the superconducting critical temperature of Sr₂CuO₃₊δ up to 95 K by ordering dopant atoms; Phys. Rev. B 74, 100506 (2006).
[8] H. Eisaki, N. Kaneko, D. L. Feng, A. Damascelli, Z.-X. Shen, and M. Greven; Effect of chemical inhomogeneity in bismuth-based copper oxide superconductors; Phys. Rev. B 69, 064512 (2004).
[9] H. Hobou, S. Ishida, K. Fujita, M. Ishikado, K. M. Kojima, H. Eisaki, and S. Uchida; Enhancement of the superconducting critical temperature in Bi₂Sr₂CaCu₂O₈₊δ by controlling disorder in CuO₂ planes; Phys. Rev. B 79, 064007 (2009).
[10] M. Qvarford, S. Söderholm, O. Tjernberg, G. Chiaia, H. Nylen, R. Nyholm, and H. Bernhoff; X-ray absorption study of oxygen in the high-Tc superconductor Bi₂Sr₂CaCu₂O₈₊δ near the interfaces to Cu, Ag and Au; Physica C 265 (1996) 113–120.
[11] B. W. Statt et al.; Screening of the middle CuO₂ layer in Bi₁.₆Pb₀.₄Sr₂Ca₂Cu₃O₁₀ determined from Cu NMR; Phys. Rev. B 48, 3536 (1993).
[12] S. Ideta, K. Takashima, and S. Uchida; Enhanced Superconducting Gaps in the Trilayer High-Temperature Bi₂Sr₂Ca₂Cu₃O₁₀₊δ Cuprate Superconductor; Phys. Rev. Lett. 104, 227001 (2010).
[13] V. Emery and J. Kivelson; Importance of phase fluctuation in superconductor with small superfluid density; Nature 374 (1995) 434–437.
[14] S. A. Kivelson; Making high Tc higher: a theoretical proposal; Physica B 318 (2002) 61–67.
[15] Y. He, M. Hashimoto, S.-D. Chen, I. M. Vishik, Z.-X. Shen; Rapid change of superconductivity and electro-phonon coupling through critical doping in Bi-2212; Science 362, (2018) 62–66.
[16] Abhay N. Pasupathy, Kenjiro K. Gomes, Ali Yazdani; Electronic Origin of the Inhomogeneous Pairing Interaction in the High-Tc Superconductor Bi₂Sr₂CaCu₂O₈; Science 320 (2008) 196–201.
[17] Tomoji Kawai, Takeshi Horiuchi; Effect of alkaline metal substitutions to Bi-Sr-Ca-Cu-O superconductor; Physica C 161 (1989) 561–566.
[18] Tomoji Kawai, Takeshi Horiuchi, Shichio Kawai; Lithium Doping but Three-layered superconducting whiskers; Appl. Phys. Lett. 60, (1992) 901–902.
[19] S. Wu, J. Schwartz, G.W. Raban Jr; Superconducting properties and micro structural evolution of Li-doped Bi₂Sr₂CaCu₂O₈₊δ; Physica C, 246 (1995) 297–308.
[20] M. Turchinskaya, A.J. Sharpiro, J. Schwartz; Magnetic–flux penetration in Li doped and undoped Bi₂Sr₂CaCu₂O₈₊δ cast tapes before and after fast neutron irradiation; Physica C, 246 (1995) 375–384.
[21] Masashi Fujiwara, Masahiro Nagae, Tatsuo Fujii, and Jun Takada; Li doping to the 2212 phase in the Bi–Sr–Ca–Cu–O system; Physica C, 274 (1997) 317–322.
[22] V. Mihaleche, G. Aldica, S. Popa, A. Crisan; Magnetic and superconducting properties in Bi₂Pb₀.₃₄Sr₂Ca₀.₆₆(Li)₀.₂Cu₂O₈₊δ superconducting system; Physica C, 384 (2003) 451–457.
[23] V. Mihaleche, G. Aldica, P. Badica; Anomalous superconductivity in Li-Cl-doped Bi-2223; Physica C, 392 (2003) 185–188.
[24] V. Mihaleche, G. Aldica, S. Popa, F. Lifiei, and D. Miu; Effect of LiClO₄ addition on the Bi₀.₇Pb₀.₃Sr₂Ca₂Cu₃O₈₊δ; Materials Letters, 58 (2004) 3040–3044.
[25] S. M. Khalil et al.; Influence of alkaline metal Li⁺ intercalation on the excess conductivity, thermopower and hardness of BSCCO pellets; Physica B, 391 (2007) 130–135.
[26] S. Rahier, S. Stassen, R. Cloots, M. Ausloos; Influence of Na doping and sintering temperature on increasing Bi₂Sr₂CaCu₂O₈ superconducting phase content in powder-form materials; Materials Letters, 60 (2006) 298–300.
[27] Ajay Mohan Suvarna, C.S. Sunandana; Magnetic penetration depth in K-doped Bi-2212 Bi₂Sr₂CaCu₂O₈₊δ; ESR study; Physica C 300 (1998) 33–37.
[28] P. Kameli, H. Salamati, and M. Eslami; The effect of sintering temperature on the intergranular properties of Bi-2223 superconductors; Solid State Commun., 137 (2006) 30–35.
[29] Ichiro Matsubara, Toru Ogura, Hiroshi Yamashita, Makoto Kinoshita; Effects of Li doping on the superconducting properties of Bi-based superconducting whiskers; Physica C 201 (1992) 83–94.
[30] Zhi-Xiong Cai, and David O. Welch; Layer-rigidity model and the mechanism for ion-diffusion-controlled kinetics in the bismuth cuprate 2212-to-223 transformation; Phys. Rev. B 52, 13015 (1995).
[31] H. Salamati, P. Kameli; The effect of Bi-2212 phase on the weak link behavior of Bi-2223 superconductors; Physica C 403 (2004) 60–66.
[32] Ilija Zeljkovic, Zhijun Xu, Jinsheng Wen, Robert S. Markiewicz, Jennifer E. Hoffman, Imaging the Impact of Single Oxygen Atoms on Superconducting Bi₂₊ₓSr₂₋ₓCaCu₂O₈₊δ; Science 337 (2012) 320–323.
[33] O. Obigili, Y. Selamet K. Korcaba; Effects of Li Substitution in Bi-2223 Superconductors; J. Supercond. Nov. Magn. 21 (2008) 439–449.
[34] D. Gohring, M. Vogt, W. Wischert, S. Kemmler-Sack; Doping of (Bi,Pb)-2223 with metal oxides; Materials Science and Engineering B 48 (1997) 244–253.
[35] N. Pathmanathan, A.L. Thomson; Investigation of Ni Substitution for Cu in Bi(Pb)-Sr-Ca-Cu-O Superconductor by AC Magnetic Susceptibility Measurements; Sri Lankan Journal of Physics, Vol. 3 (2002) 53–61.
[36] M. I. Adam; Effect of magnetic element ions on collective pinning behavior in Bi-2223 quadrilateral bars; Physica C 463–465 (2007) 439–444.
[37] M. Malik, A. Adam, Abdul Halim Sharavi, Zanial A Hassan and Kaida Khalid; AC susceptibility of the sintered Bi₂₋ₓPbₓSr₂Ca₋ₓMgₓCu₂O₈ bulk high-Tc superconductors; Mat. Res. Soc. Symp. Pro. Vol. 689 (2002) E3.8.1–E3.8.6.
[38] Duc H. Tran, Tien M. Le, Thu H. Do, Quynh T. Dinh, Nhan T. T. Duong, Do T. K. Anh, Nguyen K. Man, Duong Pham and Won-Nam Kang; Enhancements of Critical Current Density in the Bi-Pb-Sr-Ca-Cu-O Superconductor by Na Substitution; Materials Transactions, Vol. 59, No. 7 (2018) 1071–1074.