Hydrothermal Synthesis of Zn₂SnO₄ Nanoparticles for Ethanol Sensor
Main Article Content
Abstract
Zn₂SnO₄ nanoparticles were synthesized by a facile hydrothermal method for a C₂H₅OH gas-sensing application. The synthesized materials were characterized by field-emission scanning electron microscopy, powder x-ray diffraction and Raman spectroscopy. Gas sensing characteristics were measured at various concentrations of C₂H₅OH in temperature ranging from 350 to 450°C. Results pointed out that the sensor showed the highest response values at operating temperature of 450°C. The sensor response increased linearly with ethanol concentrations in the range of 125–1500 ppm. The results indicated that the hydrothermally synthesized Zn₂SnO₄ nanoparticles might be a promising candidate material for C₂H₅OH gas sensor.
Keywords
Hydrothermal, SEM, Characteristics, gas sensor
Article Details
References
[1] L. Meng; Elsevier Inc, Chapter 11 - Ethanol in Automotive Applications, (2019) 289–303.
[2] N. Kien, C. M. Hung, T. M. Ngoc, D. Thi, T. Le, and N. D. Hoa; Low-temperature prototype hydrogen sensors push Pd-decorated SnO₂ nanowires for exhaled breath applications; Sensors Actuators B. Chem. 253 (2017) 156–163.
[3] C. M. Hung, D. Thi, T. Le, and N. Van Hieu; On-chip growth of semiconductor metal oxide nanowires for gas sensors: A review; J. Sci. Adv. Mater. Devices. 2 (2017) 263–285.
[4] N. Van Hoang, C. M. Hung, N. D. Hoa, N. Van Duy, and I. Park; Chemical Excellall detection of H₂S gas at ppb concentrations using ZnFe₂O₄ nanofibers loaded with reduced graphene oxide; Sensors Actuators B. Chem. 228 (2018) 876–884.
[5] N. Van Hoang, C. M. Hung, N. D. Hoa, N. Van Duy, and N. Van Hieu; Facile on-chip electrospinning of ZnFe₂O₄ nanofiber sensors with excellent sensing performance to H₂S down ppb level; J. Hazard. Mater. 360 (2018) 6–16.
[6] H. X. Thanh, D. D. Trung, K. Q. Trung, K. V. Dam, N. Van Duy, C. M. Hung, N. D. Hoa, N. Van Hieu; On-chip growth of single phase ZnSnO₃ nanowires by thermal evaporation method for gas sensor application; J. Alloys Compd. 708 (2017) 470–475.
[7] C. M. Hung, H. V. Phuong, N. Van Duy, N. D. Hoa, and N. Van Hieu; Comparative effects of synthesis parameters on the NO₂ gas-sensing performance of on-chip grown ZnO and Zn₂SnO₄ nanowire sensors; J. Alloys Compd. 765 (2018) 1237–1242.
[8] A. X. Yang, H. Gao, and L. Zhao; Enhanced gas sensing properties of monodisperse Zn₂SnO₄ octahedron functionalized by PdO nanoparticles; Sensors Actuators B. Chem. 266 (2018) 302–310.
[9] H. M. Yang, S. Yi, Ma, H. Y. Jiao, Q. Chen, Y. Lu, W. X. Jin, W. Q. Li, T. T. Wang, X. H. Jiang, Z. Qiang, H. Chen; Synthesis of Zn₂SnO₄ hollow spheres by a template route for high-performance acetone gas sensor; Sensors Actuators B. Chem. 245 (2017) 493–506.
[10] X. Lian and Y. Li; Synthesis of Zn₂SnO₄ via a co-precipitation method and its gas-sensing property toward ethanol; Sensors Actuators B. Chem. 213 (2015) 155–163.
[11] K. A. Babu, J. Theetharigiri, J. Madhavan, and T. Babu; Synthesis and characterization of zinc stannate nanomaterials by sol-gel method; Materials Science Forum. 832 (2015) 144–157.
[12] J. Yang, S. Wang, L. Zhang, R. Dong, Z. Zhu, and X. Gao; Zn₂SnO₄-doped SnO₂ hollow spheres for phenylamine gas sensor application; Sensors Actuators B. Chem. 239 (2017) 857–864.
[13] T. Xu, X. Zhang, Z. Deng, L. Huo, and S. Gao; Synthesis of Zn₂SnO₄ octahedron with enhanced H₂S gas-sensing performance; Polyhedron. 151 (2018) 510–514.
[14] S. Zn, W. X. Jin, X. H. Jiang, and T. T. Wang Wang; Self-assembly of Zn₂SnO₄ hollow microtubes and enhanced gas-sensing performances; Materials Letters. 182 (2016) 264–268.
[15] Q. Zhao, D. Ju, X. Song, X. Deng, M. Ding, and X. Xu; Polyhedral Zn₂SnO₄: Synthesis, enhanced gas sensing and photocatalytic performance; Sensors Actuators B. Chem. 229 (2016) 627–634.
[16] V. Sepel, S. M. Becker, I. Bergmann, S. Indris, M. Scheuermann, M. Bruns, N. St; Nonequilibrium structure of Zn₂SnO₄ spinel nanoparticles; J. Mater. Chem. 22 (2012) 3117.
[17] Q. Zhao, X. Deng, M. Ding, J. Huang, D. Ju, and X. Xu; Synthesis of hollow cubic Zn₂SnO₄ sub-microstructures with enhanced photocatalytic performance; J. Alloys Compd. 671 (2016) 328–333.
[18] D. An, N. Mao, G. Deng, Y. Zou, Y. Li, T. Wei, X. Lian; Ethanol gas-sensing characteristic of Zn₂SnO₄ nanospheres; Ceram. Int. 42 (2016) 3535–3541.
[19] D. K. Bandgar, S. T. Navale, G. D. Khupse, S. A. Pawar, R. N. Malik, and V. B. Patil; Novel route for fabrication of nanostructured α–Fe₂O₃ gas sensor; Mater. Sci. Semicond. Process. 17 (2014) 67–73.
[20] C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao; Metal Oxide Gas Sensors: Sensitivity and Influencing Factors; Sensors. 10 (2010) 2088–2106.
[21] B. Wang, L. Sun, and Y. Wang; Template-free synthesis of nanosheets-assembled SnO₂ hollow spheres for enhanced ethanol gas sensing; Mater. Lett. 218 (2018) 290–294.
[22] Y. Wu, T. Jiang, T. Shi, B. Sun, Z. Tang, and G. D. Liao; Au modified ZnO nanowires for ethanol gas sensing; Sci. China Technol. Sci. 60 (2017) 71–77.
[23] N. S. Ramgir et al.; Ethanol sensing properties of pure and Au modified ZnO nanowires; Sensors Actuators B. Chem. 187 (2013) 313–318.
[2] N. Kien, C. M. Hung, T. M. Ngoc, D. Thi, T. Le, and N. D. Hoa; Low-temperature prototype hydrogen sensors push Pd-decorated SnO₂ nanowires for exhaled breath applications; Sensors Actuators B. Chem. 253 (2017) 156–163.
[3] C. M. Hung, D. Thi, T. Le, and N. Van Hieu; On-chip growth of semiconductor metal oxide nanowires for gas sensors: A review; J. Sci. Adv. Mater. Devices. 2 (2017) 263–285.
[4] N. Van Hoang, C. M. Hung, N. D. Hoa, N. Van Duy, and I. Park; Chemical Excellall detection of H₂S gas at ppb concentrations using ZnFe₂O₄ nanofibers loaded with reduced graphene oxide; Sensors Actuators B. Chem. 228 (2018) 876–884.
[5] N. Van Hoang, C. M. Hung, N. D. Hoa, N. Van Duy, and N. Van Hieu; Facile on-chip electrospinning of ZnFe₂O₄ nanofiber sensors with excellent sensing performance to H₂S down ppb level; J. Hazard. Mater. 360 (2018) 6–16.
[6] H. X. Thanh, D. D. Trung, K. Q. Trung, K. V. Dam, N. Van Duy, C. M. Hung, N. D. Hoa, N. Van Hieu; On-chip growth of single phase ZnSnO₃ nanowires by thermal evaporation method for gas sensor application; J. Alloys Compd. 708 (2017) 470–475.
[7] C. M. Hung, H. V. Phuong, N. Van Duy, N. D. Hoa, and N. Van Hieu; Comparative effects of synthesis parameters on the NO₂ gas-sensing performance of on-chip grown ZnO and Zn₂SnO₄ nanowire sensors; J. Alloys Compd. 765 (2018) 1237–1242.
[8] A. X. Yang, H. Gao, and L. Zhao; Enhanced gas sensing properties of monodisperse Zn₂SnO₄ octahedron functionalized by PdO nanoparticles; Sensors Actuators B. Chem. 266 (2018) 302–310.
[9] H. M. Yang, S. Yi, Ma, H. Y. Jiao, Q. Chen, Y. Lu, W. X. Jin, W. Q. Li, T. T. Wang, X. H. Jiang, Z. Qiang, H. Chen; Synthesis of Zn₂SnO₄ hollow spheres by a template route for high-performance acetone gas sensor; Sensors Actuators B. Chem. 245 (2017) 493–506.
[10] X. Lian and Y. Li; Synthesis of Zn₂SnO₄ via a co-precipitation method and its gas-sensing property toward ethanol; Sensors Actuators B. Chem. 213 (2015) 155–163.
[11] K. A. Babu, J. Theetharigiri, J. Madhavan, and T. Babu; Synthesis and characterization of zinc stannate nanomaterials by sol-gel method; Materials Science Forum. 832 (2015) 144–157.
[12] J. Yang, S. Wang, L. Zhang, R. Dong, Z. Zhu, and X. Gao; Zn₂SnO₄-doped SnO₂ hollow spheres for phenylamine gas sensor application; Sensors Actuators B. Chem. 239 (2017) 857–864.
[13] T. Xu, X. Zhang, Z. Deng, L. Huo, and S. Gao; Synthesis of Zn₂SnO₄ octahedron with enhanced H₂S gas-sensing performance; Polyhedron. 151 (2018) 510–514.
[14] S. Zn, W. X. Jin, X. H. Jiang, and T. T. Wang Wang; Self-assembly of Zn₂SnO₄ hollow microtubes and enhanced gas-sensing performances; Materials Letters. 182 (2016) 264–268.
[15] Q. Zhao, D. Ju, X. Song, X. Deng, M. Ding, and X. Xu; Polyhedral Zn₂SnO₄: Synthesis, enhanced gas sensing and photocatalytic performance; Sensors Actuators B. Chem. 229 (2016) 627–634.
[16] V. Sepel, S. M. Becker, I. Bergmann, S. Indris, M. Scheuermann, M. Bruns, N. St; Nonequilibrium structure of Zn₂SnO₄ spinel nanoparticles; J. Mater. Chem. 22 (2012) 3117.
[17] Q. Zhao, X. Deng, M. Ding, J. Huang, D. Ju, and X. Xu; Synthesis of hollow cubic Zn₂SnO₄ sub-microstructures with enhanced photocatalytic performance; J. Alloys Compd. 671 (2016) 328–333.
[18] D. An, N. Mao, G. Deng, Y. Zou, Y. Li, T. Wei, X. Lian; Ethanol gas-sensing characteristic of Zn₂SnO₄ nanospheres; Ceram. Int. 42 (2016) 3535–3541.
[19] D. K. Bandgar, S. T. Navale, G. D. Khupse, S. A. Pawar, R. N. Malik, and V. B. Patil; Novel route for fabrication of nanostructured α–Fe₂O₃ gas sensor; Mater. Sci. Semicond. Process. 17 (2014) 67–73.
[20] C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao; Metal Oxide Gas Sensors: Sensitivity and Influencing Factors; Sensors. 10 (2010) 2088–2106.
[21] B. Wang, L. Sun, and Y. Wang; Template-free synthesis of nanosheets-assembled SnO₂ hollow spheres for enhanced ethanol gas sensing; Mater. Lett. 218 (2018) 290–294.
[22] Y. Wu, T. Jiang, T. Shi, B. Sun, Z. Tang, and G. D. Liao; Au modified ZnO nanowires for ethanol gas sensing; Sci. China Technol. Sci. 60 (2017) 71–77.
[23] N. S. Ramgir et al.; Ethanol sensing properties of pure and Au modified ZnO nanowires; Sensors Actuators B. Chem. 187 (2013) 313–318.