Research and Fabrication of WO₃ Thin Film Sensors for C₂H₅OH Gas Sensing Application
Main Article Content
Abstract
Thin film of tungsten oxide was successfully fabricated from tungsten target by using reactive sputtering combining with lithography technology. The thickness, structure and morphology of the thin film were investigated by α-step, XRD and FE-SEM respectively. The gas sensing measurements of the WO₃ thin film sensors indicated that these sensors have a high sensitivity and quick response to C₂H₅OH. With the simple research method (using only two masks), the results of this study have a lot of potential for applying to C₂H₅OH gas sensor.
Keywords
WO3 thin film, Gas sensors, C2H5OH
Article Details
References
[1] S. Ghosh, C. Roychaudhuri, R. Bhattacharya, H. Saha, and N. Mukherjee, Palladium-silver-activated ZnO surface: Highly selective methane sensor at reasonably low operating temperature, ACS Appl. Mater. Interfaces, vol. 6, no. 6, pp. 3879–3887, 2014.
[2] D. Haridas, V. Gupta, and K. Mahavidyalaya, Enhanced Room Temperature Response of SnO₂ Thin Film Sensor Loaded with Pd Catalyst Clusters Under UV Radiation for Methane, vol. 2, pp. 758–760, 2012.
[3] I. Kosc, I. Hotovy, V. Rehaček, R. Griesseler, M. Predanocy, M. Wilke, and L. Spiess, Sputtered TiO₂ thin films with NiO additives for hydrogen detection, Appl. Surf. Sci., vol. 269, pp. 110–115, 2013.
[4] A. Sharma, J. Kumar, M. Tomar, A. Umar, and V. Gupta, Sensors and Actuators B: Chemical Metal clusters activated SnO₂ thin film for low level detection of NH₃ gas, Sensors Actuators B Chem., vol. 194, pp. 410–418, 2014.
[5] J. Zeng, M. Hu⁺, W. Wang, H. Chen, Y. Qin, NO₂-sensing properties of porous WO₃ gas sensor based on anodized sputtered tungsten thin film, Sensors and Actuators B 161 (2012) 447–452.
[6] A. Sharma, M. Tomar, and V. Gupta, Low temperature operating SnO₂ thin film sensor loaded with WO₃ micro-discs with enhanced response for NO₂ gas, Sensors Actuators B Chem., vol. 161, no. 1, pp. 1114–1118, Jan. 2012.
[7] W.-Y. Chung, J.-W. Lim, D.-D. Lee, N. Miura, and N. Yamazoe, Thermal and gas-sensing properties of planar-type micro gas sensor, Sensors Actuators B Chem., vol. 64, no. 1–3, pp. 118–123, Jun. 2000.
[8] M. Z. Ahmad, V. B. Golovko, R. H. Adnan, F. Abu Bakar, J.-Y. Ruzicka, D. P. Anderson, G. G. Andersson, and W. Wlodarski, Hydrogen sensing using gold nanoclusters supported on tungsten trioxide thin films, Int. J. Hydrogen Energy, vol. 38, no. 29, pp. 12865–12877, Sep. 2013.
[9] S. An, S. Park, H. Ko, and C. Lee, Fabrication of WO₃ nanotube sensors and their gas sensing properties, Ceram. Int., vol. 40, no. 1, pp. 1423–1429, Jan. 2014.
[10] M. Horprathum, K. Limwichrean, A. Wisitsoraat, P. Eiamsa-ard, K. Aiemnpaik, P. Limnoonthakul, N. Nuntawong, V. Pattanasetakul, A. Tuantranont, and P. Chindaduom, NO₂-sensing properties of WO₃ nanorods prepared by glancing angle DC magnetron sputtering, Sensors Actuators B Chem., vol. 176, no. 2, pp. 685–691, Jan. 2013.
[11] V. Khatko, S. Vallejos, J. Calderer, E. Llobet, X. Vilanova, and X. Correig, Gas sensing properties of WO₃ thin films deposited by rf sputtering, Sensors Actuators B Chem., vol. 126, no. 2, pp. 400–405, Oct. 2007.
[12] N. Van Toan, C. M. Hung, N. Van Duy, N. D. Hoa, D. T. Le, and N. Van Hieu, Bilayer SnO₂–WO₃ nanofilms for enhanced NH₃ gas sensing performance, Mater. Sci. Eng. B, vol. 224, no. August, pp. 163–170, 2017.
[13] M. Z. Ahmad, A. Wisitsoraat, A. S. Zoolfakar, R. A. Kadir, and W. Wlodarski, Investigation of RF sputtered tungsten trioxide nanorod thin film gas sensors prepared with a glancing angle deposition method toward reductive and oxidative analytes, Sensors Actuators B Chem., vol. 183, pp. 364–371, Jul. 2013.
[14] N. Van Hieu, V. Van Quang, N. D. Hoa, and D. Kim, Preparing large-scale WO₃ nanowire-like structure for high sensitivity NH₃ gas sensor through a simple route, Curr. Appl. Phys., vol. 11, no. 3, pp. 657–661, May 2011.
[15] J. Zhang, X. Liu, M. Xu, X. Guo, S. Wu, S. Zhang, and S. Wang, Pt clusters supported on WO₃ for ethanol detection, Sensors Actuators B Chem., vol. 147, no. 1, pp. 185–190, May 2010.
[16] N. Yamazoe, Toward innovations of gas sensor technology, Sensors Actuators B Chem., vol. 108, no. 1–2 SPEC. ISS., pp. 2–14, 2005.
[2] D. Haridas, V. Gupta, and K. Mahavidyalaya, Enhanced Room Temperature Response of SnO₂ Thin Film Sensor Loaded with Pd Catalyst Clusters Under UV Radiation for Methane, vol. 2, pp. 758–760, 2012.
[3] I. Kosc, I. Hotovy, V. Rehaček, R. Griesseler, M. Predanocy, M. Wilke, and L. Spiess, Sputtered TiO₂ thin films with NiO additives for hydrogen detection, Appl. Surf. Sci., vol. 269, pp. 110–115, 2013.
[4] A. Sharma, J. Kumar, M. Tomar, A. Umar, and V. Gupta, Sensors and Actuators B: Chemical Metal clusters activated SnO₂ thin film for low level detection of NH₃ gas, Sensors Actuators B Chem., vol. 194, pp. 410–418, 2014.
[5] J. Zeng, M. Hu⁺, W. Wang, H. Chen, Y. Qin, NO₂-sensing properties of porous WO₃ gas sensor based on anodized sputtered tungsten thin film, Sensors and Actuators B 161 (2012) 447–452.
[6] A. Sharma, M. Tomar, and V. Gupta, Low temperature operating SnO₂ thin film sensor loaded with WO₃ micro-discs with enhanced response for NO₂ gas, Sensors Actuators B Chem., vol. 161, no. 1, pp. 1114–1118, Jan. 2012.
[7] W.-Y. Chung, J.-W. Lim, D.-D. Lee, N. Miura, and N. Yamazoe, Thermal and gas-sensing properties of planar-type micro gas sensor, Sensors Actuators B Chem., vol. 64, no. 1–3, pp. 118–123, Jun. 2000.
[8] M. Z. Ahmad, V. B. Golovko, R. H. Adnan, F. Abu Bakar, J.-Y. Ruzicka, D. P. Anderson, G. G. Andersson, and W. Wlodarski, Hydrogen sensing using gold nanoclusters supported on tungsten trioxide thin films, Int. J. Hydrogen Energy, vol. 38, no. 29, pp. 12865–12877, Sep. 2013.
[9] S. An, S. Park, H. Ko, and C. Lee, Fabrication of WO₃ nanotube sensors and their gas sensing properties, Ceram. Int., vol. 40, no. 1, pp. 1423–1429, Jan. 2014.
[10] M. Horprathum, K. Limwichrean, A. Wisitsoraat, P. Eiamsa-ard, K. Aiemnpaik, P. Limnoonthakul, N. Nuntawong, V. Pattanasetakul, A. Tuantranont, and P. Chindaduom, NO₂-sensing properties of WO₃ nanorods prepared by glancing angle DC magnetron sputtering, Sensors Actuators B Chem., vol. 176, no. 2, pp. 685–691, Jan. 2013.
[11] V. Khatko, S. Vallejos, J. Calderer, E. Llobet, X. Vilanova, and X. Correig, Gas sensing properties of WO₃ thin films deposited by rf sputtering, Sensors Actuators B Chem., vol. 126, no. 2, pp. 400–405, Oct. 2007.
[12] N. Van Toan, C. M. Hung, N. Van Duy, N. D. Hoa, D. T. Le, and N. Van Hieu, Bilayer SnO₂–WO₃ nanofilms for enhanced NH₃ gas sensing performance, Mater. Sci. Eng. B, vol. 224, no. August, pp. 163–170, 2017.
[13] M. Z. Ahmad, A. Wisitsoraat, A. S. Zoolfakar, R. A. Kadir, and W. Wlodarski, Investigation of RF sputtered tungsten trioxide nanorod thin film gas sensors prepared with a glancing angle deposition method toward reductive and oxidative analytes, Sensors Actuators B Chem., vol. 183, pp. 364–371, Jul. 2013.
[14] N. Van Hieu, V. Van Quang, N. D. Hoa, and D. Kim, Preparing large-scale WO₃ nanowire-like structure for high sensitivity NH₃ gas sensor through a simple route, Curr. Appl. Phys., vol. 11, no. 3, pp. 657–661, May 2011.
[15] J. Zhang, X. Liu, M. Xu, X. Guo, S. Wu, S. Zhang, and S. Wang, Pt clusters supported on WO₃ for ethanol detection, Sensors Actuators B Chem., vol. 147, no. 1, pp. 185–190, May 2010.
[16] N. Yamazoe, Toward innovations of gas sensor technology, Sensors Actuators B Chem., vol. 108, no. 1–2 SPEC. ISS., pp. 2–14, 2005.