Electrochemical Characteristics of Fe₂O₃ Electrode in Alkaline Solution
Main Article Content
Abstract
To find the suitable materials for Fe/air battery anode, in this study Fe₂O₃ electrodes were prepared using commercial Fe₂O₃ materials of Aldrich. The size and morphology of Fe₂O₃ materials were observed by scanning electron microscope (SEM). The electrochemical properties of the Fe₂O₃ electrodes in alkaline solution were investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The redox reaction rate of iron was slow, resistance of Fe₂O₃ electrodes increased during cycling. The effects of K₂S additive in electrolyte solution on the electrochemical properties of Fe₂O₃ electrodes were also investigated. The obtained results show that K₂S additive strongly affected on the electrochemical characteristics of Fe₂O₃ electrode such as improving redox reaction rate and cyclability, decreasing the electrochemical impedance of Fe₂O₃ electrode.
Keywords
Fe2O3 particles, Fe2O3 electrode, K2S additive, Fe-air battery
Article Details
References
[1] A. K. Manohar, S. Malkhandi, B. Yang, C. Yang, G. K. S. Prakash, and S. R. Narayanan, A High Performance Rechargeable Iron Electrode for Large Scale Battery Based Energy Storage, Journal of The Electrochemical Society 159 (2012) A1209–A1214.
[2] A. Inoishi, Y. W. Ju, S. Ida, T. Ishihara, Fe-air rechargeable battery using oxide ion conducting electrolyte of Y₂O₃ stabilized ZrO₂, Journal of Power Sources 229 (2013) 12–15.
[3] C. Kao, K. Chou, Iron/carbon-black composite nanoparticles as an iron electrode material in a paste type rechargeable alkaline battery, Journal of Power Sources 195 (2010) 2399–2404.
[4] B. Cui, H. Xin, S. Liu, X. Liu, Y. Hao, Q. Guo, and S. Licht, Improved Cycle Iron Molten Air Battery Performance Using a Robust Fin Air Electrode, Journal of The Electrochemical Society, 164 (2017) A88–A92.
[5] A. Paulraj, Y. Kiros, B. Skarman, and H. Vidarsson, Core/Shell Structure Nano-Iron/Iron Carbide Electrodes for Rechargeable Alkaline Iron Batteries, Journal of The Electrochemical Society 164 (2017) A1665–A1672.
[6] T. S. Balasubramanian, A. K. Shukla, Effect of metal-sulfide additives on charge/discharge reactions of alkaline iron electrode, J. Power Sources 41 (1993) 99–105.
[7] J. Cerny, J. Jindra, K. Micka, Comparative study of porous iron electrodes, J. Power Sources 45 (1993) 267–279.
[8] P. Periasamy, B. R. Babu, S. V. Iyer, Performance Characterization of Sintered Iron Electrodes in Nickel/Iron Alkaline Batteries, J. Power Sources 62 (1996) 9–14.
[9] C. A. Caldas, M. C. Lopes, I. A. Carlos, The role of FeS and (NH₄)₂CO₃ additives on the pressed type Fe electrode, J. Power Sources 74 (1998) 108–112.
[10] C. A. C. Souza, I. A. Carlos, M. C. Lopes, G. A. Finazzi, M. R. H. de Almeida, Short communication Self-discharge of Fe–Ni alkaline batteries, J. Power Sources 132 (2004) 288–290.
[11] A. Manohar, C. Yang, and S. R. Narayanan, Enhancing the Performance of the Rechargeable Iron Electrode in Alkaline Batteries with Bismuth Oxide and Iron Sulfide Additives, Journal of The Electrochemical Society, 160 (2013) A2078–A2084.
[12] J. Cerny, K. Micka, Voltammetric study of an iron electrode in alkaline electrolytes, J. Power Sources 25 (1989) 111–122.
[13] P. Periasamy, B. R. Babu, S. V. Iyer, Electrochemical behaviour of Teflon-bonded iron oxide electrodes in alkaline solutions, J. Power Sources 63 (1996) 79–85.
[14] B. T. Hang, T. Watanabe, M. Egashira, I. Watanabe, S. Okada, J. Yamaki, The effect of additives on the electrochemical properties of Fe/C composite for Fe/air battery anode, J. Power Sources 155 (2006) 461–469.
[15] A. K. Manohar, C. Yang, and S. R. Narayanan, The Role of Sulfide Additives in Achieving Long Cycle Life Rechargeable Iron Electrodes in Alkaline Batteries, Journal of The Electrochemical Society, 162 (2015) A1864–A1872.
[16] K. Micka, Z. Zabransky, Study of iron oxide electrodes in an alkaline electrolyte, J. Power Sources 19 (1987) 315–323.
[17] M. Jayalakshmi, B. N. Begumj, V. R. Chidambaram, R. Sabapathi, V. S. Muralidharan, Role of activation on the performance of the iron negative electrode in nickel/iron cells, J. Power Sources 39 (1992) 113–119.
[18] B. T. Hang, M. Egashira, I. Watanabe, S. Okada, J. Yamaki, S. Yoon, I. Mochida, The effect of carbon species on the properties of Fe/C composite for metal-air battery anode, J. Power Sources 143 (2005) 256–264.
[19] K. Vijayamohanan, A. K. Shukla, and S. Sathyanarayana, Role of Sulfide Additives on the Performance of Alkaline Iron Electrodes, J. Electroanal. Chem. 289 (1990) 55–68.
[20] G. P. Kalaignan, V. S. Muralidharan, and K. I. Vasu, Triangular potential sweep voltammetric study of porous iron electrodes in alkali solutions, J. Appl. Electrochem. 17 (1987) 1083–1092.
[21] D. W. Shoesmith, P. Taylor, M. G. Bailey, and B. Ikeda, Electrochemical behaviour of iron in alkaline sulphide solutions, Electrochim. Acta, 23 (1978) 903–916.
[2] A. Inoishi, Y. W. Ju, S. Ida, T. Ishihara, Fe-air rechargeable battery using oxide ion conducting electrolyte of Y₂O₃ stabilized ZrO₂, Journal of Power Sources 229 (2013) 12–15.
[3] C. Kao, K. Chou, Iron/carbon-black composite nanoparticles as an iron electrode material in a paste type rechargeable alkaline battery, Journal of Power Sources 195 (2010) 2399–2404.
[4] B. Cui, H. Xin, S. Liu, X. Liu, Y. Hao, Q. Guo, and S. Licht, Improved Cycle Iron Molten Air Battery Performance Using a Robust Fin Air Electrode, Journal of The Electrochemical Society, 164 (2017) A88–A92.
[5] A. Paulraj, Y. Kiros, B. Skarman, and H. Vidarsson, Core/Shell Structure Nano-Iron/Iron Carbide Electrodes for Rechargeable Alkaline Iron Batteries, Journal of The Electrochemical Society 164 (2017) A1665–A1672.
[6] T. S. Balasubramanian, A. K. Shukla, Effect of metal-sulfide additives on charge/discharge reactions of alkaline iron electrode, J. Power Sources 41 (1993) 99–105.
[7] J. Cerny, J. Jindra, K. Micka, Comparative study of porous iron electrodes, J. Power Sources 45 (1993) 267–279.
[8] P. Periasamy, B. R. Babu, S. V. Iyer, Performance Characterization of Sintered Iron Electrodes in Nickel/Iron Alkaline Batteries, J. Power Sources 62 (1996) 9–14.
[9] C. A. Caldas, M. C. Lopes, I. A. Carlos, The role of FeS and (NH₄)₂CO₃ additives on the pressed type Fe electrode, J. Power Sources 74 (1998) 108–112.
[10] C. A. C. Souza, I. A. Carlos, M. C. Lopes, G. A. Finazzi, M. R. H. de Almeida, Short communication Self-discharge of Fe–Ni alkaline batteries, J. Power Sources 132 (2004) 288–290.
[11] A. Manohar, C. Yang, and S. R. Narayanan, Enhancing the Performance of the Rechargeable Iron Electrode in Alkaline Batteries with Bismuth Oxide and Iron Sulfide Additives, Journal of The Electrochemical Society, 160 (2013) A2078–A2084.
[12] J. Cerny, K. Micka, Voltammetric study of an iron electrode in alkaline electrolytes, J. Power Sources 25 (1989) 111–122.
[13] P. Periasamy, B. R. Babu, S. V. Iyer, Electrochemical behaviour of Teflon-bonded iron oxide electrodes in alkaline solutions, J. Power Sources 63 (1996) 79–85.
[14] B. T. Hang, T. Watanabe, M. Egashira, I. Watanabe, S. Okada, J. Yamaki, The effect of additives on the electrochemical properties of Fe/C composite for Fe/air battery anode, J. Power Sources 155 (2006) 461–469.
[15] A. K. Manohar, C. Yang, and S. R. Narayanan, The Role of Sulfide Additives in Achieving Long Cycle Life Rechargeable Iron Electrodes in Alkaline Batteries, Journal of The Electrochemical Society, 162 (2015) A1864–A1872.
[16] K. Micka, Z. Zabransky, Study of iron oxide electrodes in an alkaline electrolyte, J. Power Sources 19 (1987) 315–323.
[17] M. Jayalakshmi, B. N. Begumj, V. R. Chidambaram, R. Sabapathi, V. S. Muralidharan, Role of activation on the performance of the iron negative electrode in nickel/iron cells, J. Power Sources 39 (1992) 113–119.
[18] B. T. Hang, M. Egashira, I. Watanabe, S. Okada, J. Yamaki, S. Yoon, I. Mochida, The effect of carbon species on the properties of Fe/C composite for metal-air battery anode, J. Power Sources 143 (2005) 256–264.
[19] K. Vijayamohanan, A. K. Shukla, and S. Sathyanarayana, Role of Sulfide Additives on the Performance of Alkaline Iron Electrodes, J. Electroanal. Chem. 289 (1990) 55–68.
[20] G. P. Kalaignan, V. S. Muralidharan, and K. I. Vasu, Triangular potential sweep voltammetric study of porous iron electrodes in alkali solutions, J. Appl. Electrochem. 17 (1987) 1083–1092.
[21] D. W. Shoesmith, P. Taylor, M. G. Bailey, and B. Ikeda, Electrochemical behaviour of iron in alkaline sulphide solutions, Electrochim. Acta, 23 (1978) 903–916.