Ethanol Vapor Sensing Property of Quartz Crystal Microbalance Sensor Coated with Carbon Nanotubes.
Main Article Content
Abstract
In this study, ethanol gas sensor based on a quartz crystal microbalance (QCM) coated with carbon nanotubes (CNTs) was studied. From field-emission scanning electron microscope (FESEM), it was found that the average length and diameter of the CNTs were about 4.52 µm and 75 nm, respectively. Further, carbon nanotube coated on a QCM for ethanol gas sensors were fabricated. The gas-sensitivity of sensor was studied systematically in concentrations of ethanol vapor range from 5 to 25 sccm at room temperature over time. The results show that the sensor has a response time in the range of 200 to 300 seconds and potential application in ethanol gas sensor.
Keywords
QCM, CNTs, Gas sensor, Ethanol
Article Details
References
[1]. S. K. Vashist and P. Vashist, Recent advances in quartz crystal microbalance-based sensors, J. Sensors, vol. 2011, 2011.
[2]. F. N. Dultsev and A. V. Tronin, Rapid sensing of hepatitis B virus using QCM in the thickness shear mode, Sensors Actuators, B Chem., vol. 216, no. 2015, pp. 1–5, 2015.
[3]. H. He, L. Zhou, Y. Wang, C. Li, J. Yao, W. Zhang, Q. Zhang, M. Li, H. Li, and W. F. Dong, Detection of trace microcystin-LR on a 20 MHz QCM sensor coated with in situ self-assembled MIPs, Talanta, vol. 131, no. 2015, pp. 8–13, 2015.
[4]. B. Ding, J. Kim, Y. Miyazaki, and S. Shiratori, Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection, Sensors Actuators, B Chem., vol. 101, no. 3, pp. 373–380, 2004.
[5]. X. H. Wang and J. Zhang, Wireless ZnO Nanowires QCM Ammonia Sensor System Based on Zigbee Protocol, Appl. Mech. Mater., vol. 248, pp. 199–203, 2012.
[6]. M. M. Ayad, G. El-Hefnawey, and N. L. Torad, A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance, J. Hazard. Mater., vol. 168, no. 1, pp. 85–88, 2009.
[7]. M. H. Shinen, F. O. Essa, and A. S. Naji, Study the Sensitivity of Quartz Crystal Microbalance ( QCM ) Sensor Coated with Different Thickness of Polyaniline for Determination Vapors of Ether , Chloroform , Carbon tetrachloride and Ethyl acetate, Chem. Mater. Res., vol. 6, no. 3, pp. 7–12, 2014.
[8]. N. V. Quy, V. A. Minh, N. V. Luan, V. N. Hung, and N. V. Hieu, Gas sensing properties at room temperature of a quartz crystal microbalance coated with ZnO nanorods, Sensors Actuators, B Chem., vol. 153, no. 1, pp. 188–193, 2011.
[9]. M. Varga, a. Laposa, P. Kulha, J. Kroutil, M. Husak, and a. Kromka, Quartz crystal microbalance gas sensor with nanocrystalline diamond sensitive layer, Phys. Status Solidi, vol. 252, no. 11, pp. 2591–2597, 2015.
[10]. S. J. Young and Z. D. Lin, Ethanol gas sensors based on multi-wall carbon nanotubes on oxidized Si substrate, Microsyst. Technol., pp. 1–4, 2016.
[11]. N. X. Dinh, L. A. Tuan, and N. V. Quy, Room Temperature Violate Organic Compound Sensor Based on Functional Multi-Wall Carbon Nanotubes Coated Quartz Crystal Microbalance, Sensor Lett. Vol. 13, No. 6, pp 449-455, 2015.
[12]. G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung, Z. Phys., vol. 155, no. 2, pp. 206–222, 1959.
[2]. F. N. Dultsev and A. V. Tronin, Rapid sensing of hepatitis B virus using QCM in the thickness shear mode, Sensors Actuators, B Chem., vol. 216, no. 2015, pp. 1–5, 2015.
[3]. H. He, L. Zhou, Y. Wang, C. Li, J. Yao, W. Zhang, Q. Zhang, M. Li, H. Li, and W. F. Dong, Detection of trace microcystin-LR on a 20 MHz QCM sensor coated with in situ self-assembled MIPs, Talanta, vol. 131, no. 2015, pp. 8–13, 2015.
[4]. B. Ding, J. Kim, Y. Miyazaki, and S. Shiratori, Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection, Sensors Actuators, B Chem., vol. 101, no. 3, pp. 373–380, 2004.
[5]. X. H. Wang and J. Zhang, Wireless ZnO Nanowires QCM Ammonia Sensor System Based on Zigbee Protocol, Appl. Mech. Mater., vol. 248, pp. 199–203, 2012.
[6]. M. M. Ayad, G. El-Hefnawey, and N. L. Torad, A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance, J. Hazard. Mater., vol. 168, no. 1, pp. 85–88, 2009.
[7]. M. H. Shinen, F. O. Essa, and A. S. Naji, Study the Sensitivity of Quartz Crystal Microbalance ( QCM ) Sensor Coated with Different Thickness of Polyaniline for Determination Vapors of Ether , Chloroform , Carbon tetrachloride and Ethyl acetate, Chem. Mater. Res., vol. 6, no. 3, pp. 7–12, 2014.
[8]. N. V. Quy, V. A. Minh, N. V. Luan, V. N. Hung, and N. V. Hieu, Gas sensing properties at room temperature of a quartz crystal microbalance coated with ZnO nanorods, Sensors Actuators, B Chem., vol. 153, no. 1, pp. 188–193, 2011.
[9]. M. Varga, a. Laposa, P. Kulha, J. Kroutil, M. Husak, and a. Kromka, Quartz crystal microbalance gas sensor with nanocrystalline diamond sensitive layer, Phys. Status Solidi, vol. 252, no. 11, pp. 2591–2597, 2015.
[10]. S. J. Young and Z. D. Lin, Ethanol gas sensors based on multi-wall carbon nanotubes on oxidized Si substrate, Microsyst. Technol., pp. 1–4, 2016.
[11]. N. X. Dinh, L. A. Tuan, and N. V. Quy, Room Temperature Violate Organic Compound Sensor Based on Functional Multi-Wall Carbon Nanotubes Coated Quartz Crystal Microbalance, Sensor Lett. Vol. 13, No. 6, pp 449-455, 2015.
[12]. G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung, Z. Phys., vol. 155, no. 2, pp. 206–222, 1959.