Ethanol Vapor Sensing Property of Quartz Crystal Microbalance Sensor Coated with Carbon Nanotubes.

Duc Hoang Nguyen1, Thanh Vinh Nguyen1,2, Van Cat Vu1,3, Van Toan Nguyen1, Thi Thanh Le Dang1, Van Quy Nguyen1,
1 Trường Đại học Bách khoa Hà Nội – Số 1, Đại Cồ Việt, Hai Bà Trưng, Hà Nội
2 Trường Đại học Công nghệ Giao thông Vận tải, 54 Triều Khúc, Thanh Xuân, Hà Nội
3 Trường Trung học phổ thông Kinh Môn 2, Hiệp Sơn, Kinh Môn, Hải Dương

Main Article Content

Abstract

In this study, ethanol gas sensor based on a quartz crystal microbalance (QCM) coated with carbon nanotubes (CNTs) was studied. From field-emission scanning electron microscope (FESEM), it was found that the average length and diameter of the CNTs were about 4.52 µm and 75 nm, respectively. Further, carbon nanotube coated on a QCM for ethanol gas sensors were fabricated. The gas-sensitivity of sensor was studied systematically in concentrations of ethanol vapor range from 5 to 25 sccm at room temperature over time. The results show that the sensor has a response time in the range of 200 to 300 seconds and potential application in ethanol gas sensor.

Article Details

References

[1]. S. K. Vashist and P. Vashist, Recent advances in quartz crystal microbalance-based sensors, J. Sensors, vol. 2011, 2011.
[2]. F. N. Dultsev and A. V. Tronin, Rapid sensing of hepatitis B virus using QCM in the thickness shear mode, Sensors Actuators, B Chem., vol. 216, no. 2015, pp. 1–5, 2015.
[3]. H. He, L. Zhou, Y. Wang, C. Li, J. Yao, W. Zhang, Q. Zhang, M. Li, H. Li, and W. F. Dong, Detection of trace microcystin-LR on a 20 MHz QCM sensor coated with in situ self-assembled MIPs, Talanta, vol. 131, no. 2015, pp. 8–13, 2015.
[4]. B. Ding, J. Kim, Y. Miyazaki, and S. Shiratori, Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection, Sensors Actuators, B Chem., vol. 101, no. 3, pp. 373–380, 2004.
[5]. X. H. Wang and J. Zhang, Wireless ZnO Nanowires QCM Ammonia Sensor System Based on Zigbee Protocol, Appl. Mech. Mater., vol. 248, pp. 199–203, 2012.
[6]. M. M. Ayad, G. El-Hefnawey, and N. L. Torad, A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance, J. Hazard. Mater., vol. 168, no. 1, pp. 85–88, 2009.
[7]. M. H. Shinen, F. O. Essa, and A. S. Naji, Study the Sensitivity of Quartz Crystal Microbalance ( QCM ) Sensor Coated with Different Thickness of Polyaniline for Determination Vapors of Ether , Chloroform , Carbon tetrachloride and Ethyl acetate, Chem. Mater. Res., vol. 6, no. 3, pp. 7–12, 2014.
[8]. N. V. Quy, V. A. Minh, N. V. Luan, V. N. Hung, and N. V. Hieu, Gas sensing properties at room temperature of a quartz crystal microbalance coated with ZnO nanorods, Sensors Actuators, B Chem., vol. 153, no. 1, pp. 188–193, 2011.
[9]. M. Varga, a. Laposa, P. Kulha, J. Kroutil, M. Husak, and a. Kromka, Quartz crystal microbalance gas sensor with nanocrystalline diamond sensitive layer, Phys. Status Solidi, vol. 252, no. 11, pp. 2591–2597, 2015.
[10]. S. J. Young and Z. D. Lin, Ethanol gas sensors based on multi-wall carbon nanotubes on oxidized Si substrate, Microsyst. Technol., pp. 1–4, 2016.
[11]. N. X. Dinh, L. A. Tuan, and N. V. Quy, Room Temperature Violate Organic Compound Sensor Based on Functional Multi-Wall Carbon Nanotubes Coated Quartz Crystal Microbalance, Sensor Lett. Vol. 13, No. 6, pp 449-455, 2015.
[12]. G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung, Z. Phys., vol. 155, no. 2, pp. 206–222, 1959.