Enhancement of Ethanol Vapor Sensing Properties of ZnO Nanoplates by Simple Composition with α-Fe₂O₃ Nanorods
Main Article Content
Abstract
ZnO nanoplates with average size of and nanorods with an average diameter and a length of 50 nm and several μm have been prepared through hydrothermal treatment method. Both materials were mixed in weight ratios () of 1/9, 2/8, 3/7, 1/1, 7/3, 8/2 and 9/1 to produce nanocomposite materials. Ethanol vapor properties of films derived from obtained materials, pristine nanoplates ZnO and pristine nanorods were investigated at temperatures in the range of and ethanol vapor concentrations in the range of 125–1500 ppm. The result shows that the material of 80 wt.% ZnO/20 wt.% exhibits the highest response to ethanol vapor at . The improvement in the ethanol vapor sensing characteristics of this material compared with pristine nanoplates ZnO and pristine nanorods is attributed to the formation of heterojunctions in materials and their porous structure.
Keywords
$ZnO$ nanoplates, $\alpha-Fe_{2}O_{3}$ nanorods, $ZnO/\alpha-Fe_{2}O_{3}$ nanocomposites, Ethanol vapor sensor
Article Details
References
[2] Μ.Η. Huang, Room-Temperature Ultraviolet Nanowire Nanolasers, Science. 292 (2001) 1897-1899.
[3] J.X. Wang, X.W. Sun, A. Wei, Y. Lei, X.P. Cai, C.M. Li, Z.L. Dong, Zinc oxide nanocomb biosensor for glucose detection, Applied Physics Letters. 88 (2006) 10-13.
[4] J.X. Wang, X.W. Sun, H. Huang, Y.C. Lee, O.K. Tan, M.B. Yu, G.Q. Lo, D.L. Kwong. A two-step hydrothermally grown ZnO microtube array for CO gas sensing, Applied Physics A: Materials Science and Processing. 88 (2007) 611-615.
[5] M. Hjiri, L. El Mir, S. Leonardi, N. Donato, G. Neri, CO and NO2 Selective Monitoring by ZnO-Based Sensors, Nanomaterials. 3 (2013) 357-369.
[6] C.-L. Hsu, K.-C. Chen, T.-Y. Tsai, T.-J. Hsueh, Fabrication of gas sensor based on p-type ZnO nanoparticles and n-type ZnO nanowires, Sensors and Actuators B: Chemical. 182 (2013) 190-196.
[7] Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters. 84 (2004) 3654-3656.
[8] J.H. Jun, H. Seong, K. Cho, B.-M.M. Moon, S. Kim, Ultraviolet photodetectors based on ZnO nanoparticles, Ceramics International. 35 (2009) 2797-2801.
[9] L. Luo, Y. Zhang, S.S. Mao, L. Lin, Fabrication and characterization of ZnO nanowires based UV photodiodes, Sensors and Actuators, A: Physical. 127 (2006) 201-206.
[10] N.D. Cuong, D.Q. Khieu, T.T. Hoa, D.T. Quang, P.H. Viet, T.D. Lam, N.D. Hoa, N. Van Hieu, Facile synthesis of $x-Fe_{2}O_{3}$ nanoparticles for high-performance CO gas sensor, Materials Research Bulletin. 68 (2015) 302-307.
[11] H. Fan, T. Zhang, X. Xu, N. Lv. Sensors and Actuators B: Chemical Fabrication of N-type $Fe_{2}O_{3}$ and P-type $LaFeO_{3}$ nanobelts by electrospinning and determination of gas-sensing properties, Sensors & Actuators: B. Chemical. 153 (2011) 83-88.
[12] P.N. Hieu, P. Van Toan, N.P. Thang, D.D. Vuong, N.D. Chien. Synthesis and Gas-Sensing Properties of Hollow Sea Urchin-Like $\alpha-Fe_{2}O_{3}$ Nanostructure, E-Journal of Surface Science and Nanotechnology. 9 (2011) 508-511.
[13] Y. V. Kaneti, Q.M.D. Zakaria, Z. Zhang, C. Chen, J. Yue, M. Liu, X. Jiang, A. Yu, Solvothermal synthesis of ZnO-decorated $\alpha-Fe_{2}O_{3}$ nanorods with highly enhanced gas-sensing performance toward n-butanol, Journal of Materials Chemistry A. 2 (2014) 13283-13292.
[14] J. Bandara, U. Klehm, J. Kiwi, Raschig rings-Fe2O3 composite photocatalyst activate in the degradation of 4-chlorophenol and Orange II under daylight irradiation, Applied Catalysis B: Environmental. 76 (2007) 73-81.
[15] L.-P. Zhu, H.-M. Xiao, X.-M. Liu, S.-Y. Fu, Template-free synthesis and characterization of novel 3D urchin-like $\alpha-Fe_{2}O_{3}$ superstructures. J. Mater. Chem. 16 (2006) 1794-1797.
[16] Y. Zheng, Y. Cheng, Y. Wang, F. Bao, L. Zhou, X. Wei, Y. Zhang, Q. Zheng. Quasicubic alpha-Fe2O3 nanoparticles with excellent catalytic performance., The Journal of Physical Chemistry. B. 110 (2006) 3093-3097.
[17] X. Wen. S. Wang, Y. Ding. Z. Lin Wang, S. Yang, Controlled growth of large-area, uniform, vertically aligned arrays of $\alpha-Fe_{2}O_{3}$ nanobelts and nanowires, Journal of Physical Chemistry B. 109 (2005) 215-220.
[18] C.-J. Jia, L.-D. Sun, Z.-G. Yan, L.-P. You, F. Luo, X.-D. Han, Y.-C. Pang. Z. Zhang, C.-H. Yan, Single-Crystalline Iron Oxide Nanotubes, Angewandte Chemie International Edition. 44 (2005) 4328-4333.
[19] J.J. Chun, L. Feng, D.H. Xiao, T. George, R.L.S. Jorg, Large-Scale Synthesis of Single-Crystalline Iron Oxide Magnetic Nanorings. J. Am. Chem. Soc. 130 (2008) 16968.
[20] D.D. Vuong, K.Q. Trung, N.H. Hung, N. Van Hieu, N.D. Chien, Facile preparation of large-scale $\alpha-Fe_{2}O_{3}$ nanorod/SnO2 nanorod composites and their LPG-sensing properties, Journal of Alloys and Compounds. 599 (2014) 195-201.
[21] B. Mao, Z. Kang, E. Wang, C. Tian, Z. Zhang, C. Wang. Y. Song. M. Li. Template free fabrication of hollow hematite spheres via a one-pot polyoxometalate-assisted hydrolysis process, Journal of Solid State Chemistry. 180 (2007) 489-495.
[22] Z. Pu, M. Cao, J. Yang, K. Huang. C. Hu, Controlled synthesis and growth mechanism of hematite nanorhombohedra, nanorods and nanocubes, Nanotechnology. 17 (2006) 799-804.
[23] S.J. Kim, C.W. Na, I.S. Hwang. J.H. Lee. One-pot hydrothermal synthesis of CuO-ZnO composite hollow spheres for selective H2S detection, Sensors and Actuators, B: Chemical. 168 (2012) 83-89.
[24] Y. Liu, J. Yu, P.T. Lai, Investigation of WO3/ZnO thin-film heterojunction-based Schottky diodes for H2 gas sensing, International Journal of Hydrogen Energy. 39 (2014) 10313-10319.
[25] S.M. Lam, J.C. Sin, A.Z. Abdullah, A.R. Mohamed, ZnO nanorods surface-decorated by WO3 nanoparticles for photocatalytic degradation of endocrine disruptors under a compact fluorescent lamp, Ceramics International. 39 (2013) 2343-2352.
[26] D.D. Nguyen, D.T. Do, X.H. Vu, D.V. Dang, D.C. Nguyen, ZnO nanoplates surfaced-decorated by $WO_{3}$ nanorods for NH3 gas sensing application, Advances in Natural Sciences: Nanoscience and Nanotechnology. 7 (2016) 15004.
[27] N.D. Dien, L.H. Phuoc, V.X. Hien, D.D. Vuong, N.D. Chien, Hydrothermal Synthesis and Ammonia Sensing Properties of $WO_{3}/Fe_{2}O_{3}$ Nanorod Composites, Journal of Electronic Materials. 46 (2017) 3309-3316.
[28] T. Gao, T.H. Wang, Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications, Applied Physics A: Materials Science and Processing. 80 (2005) 1451-1454.