Synthesis and Electrochemical Characterization of Graphene/Poly(1,8-diaminonaphthalene) Nanocomposite Films

Van Trong Vu1, Thi Hong Ngoc Truong1, , Quan Le2, Van Huy Vu1, Thanh Duy Bui1, Le Huy Nguyen2, Van Anh Nguyen1, Tuan Dung Nguyen1
1 Truong Dai hoc Bach Khoa Ha Noi - So 1, Dai Co Viet, Hai Ba Trung, Ha Noi
2 Vien Ky Thuat Nhiep Doi - Vien Han Lam Khoa hoc va Cong nghe Viet Nam

Main Article Content

Abstract

Graphene (Gr) was introduced as a great promise for various applications due to its enhanced electrical properties. Therefore, Gr would be a potential functional component to prepare conducting polymer composites with superior material properties. This study reports the preparation of a graphene/poly(1,8-diaminonaphthalene) composite material on a glassy carbon electrode by electrochemical technique. The electrochemical behaviours recorded by cyclic voltammetry and electrochemical impedance spectroscopy techniques clearly indicated that the synthesized composite films were much more electroactive and more stable than the pure poly(1,8-diaminonaphthalene) film. From the experimental data in this work, the label-free electrochemical sensors based on graphene/poly(1,8-diaminonaphthalene) could be developed by enhancing the intrinsic electrical properties of the composite material.

Article Details

References

[1]. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb Carbon: A Review of Graphene, Chem. Rev. 110 (2010) 132-145.
[2]. G. Kaur, R. Adhikari, P. Cass, M. Bown, P. Gunatillake, Electrically conductive polymers and composites for biomedical applications, RSC Adv. 5 (2015) 37553-37567.
[3]. N.T. Dung, V.H. Duy, D.T.T. Huyen, N.V. Tu, D.N. Chuc, N.H. Binh, T.D. Lam, N.X. Phuc, T. Hoang, Chế tạo và nghiên cứu tính chất màng tổ hợp dạng đa lớp graphen/poly(1,8-diaminonapthalen) Tạp chí Khoa học và Công nghệ 52 (2014) 115-122.
[4]. H.D. Vu, L.H. Nguyen, T.D. Nguyen, H.B. Nguyen, T.L. Nguyen, D.L. Tran, Anodic stripping voltammetric determination of Cd2+ and Pb2+ using interpenetrated MWCNT/P1,5-DAN as an enhanced sensing interface. Ionics 21 (2015) 571–578.
[5]. T.D. Nguyen, T.T.H. Dang, H. Thai, L.H. Nguyen, D.L. Tran, B. Piro, M.C. Pham, One-step Electrosynthesis of Poly(1,5-diaminonaphthalene)/Graphene Nanocomposite as Platform for Lead Detection in Water, Electroanalysis 28 (2016) 1907-1913.
[6]. N.V. Chuc, N.H. Binh, C.T. Thanh, N.V. Tu, N.L. Huy, N.T. Dung, P.N. Minh, V.T. Thu, T.D. Lam, Electrochemical Immunosensor for Detection of Atrazine Based on Polyaniline/Graphene, J. Mater. Sci. Technol. 32 (2016) 539-544.
[7]. M. El Rhazi, S. Majid, Electrochemical sensors based on polydiaminonaphthalene and polyphenylenediamine for monitoring metal pollutants, Trends Environ. Anal. Chem. 2 (2014) 33-42.
[8]. V.A. Nguyen, H.L. Nguyen, D.T. Nguyen, Q.P. Do, L.D. Tran, Electrosynthesized Poly(1,5-diaminonaphthalene)/polypyrrole nanowires bilayer as an immunosensor platform for breast cancer biomarker CA 15-3, Curr. Appl. Phys. 17 (2017) 1422-1429.
[9]. M. Tagowska, B. Palys, M. Mazur, M. Skompska, K. Jackowska, In situ deposition of poly(1,8-diaminonaphthalene): from thin films to nanometer-sized structures, Electrochim. Acta 50 (2005) 2363-2370.
[10]. N.T. Dung, P.N. Bách, Đ.I. Anh, T.T.X. Hằng, Tổng hợp điện hóa màng poly(1,8-diaminonaphtalen) trong môi trường nước. Tạp chí Khoa học và Công nghệ, 46 (2008) 97-101.
[11]. J. Shi, J.C. Claussen, E.S. McLamore, A. ul Haque, D. Jaroch, A.R. Diggs, P. Calvo-Marzal, J.L. Rickus, D.M. Porterfield, A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors, Nanotechno., 22 (2011) 355502.
[12]. M.P. Siswana, K.I. Ozoemena, T. Nyokong, Electrocatalysis of asulam on cobalt phthalocyanine modified multi-walled carbon nanotubes immobilized on a basal plane pyrolytic graphite electrode, Electrochim. Acta. 52 (2006) 114-122.