Design and Fabrication of Centrifugal Microfluidic Chip Integrated with Screen-Printed Electrode for Electrochemical Biosensor Application
Main Article Content
Abstract
In this work, the centrifugal microfluidic chip (CMF) was designed and fabrication to integrate onto transducer's sensor in order to obtain minimization of reagent consumption used in sensor fabrication and to establish the automation process for bioelements immobilization. The results showed that the integrated centrifugal microfluidic chip (siphon type) with electrode can reduce 20 times of the chemical reagent consumption compared to dropping method in the sensor fabrication process. Furthermore, the integration of four chip simultaneously on the circular disk mounted on centrifugal system can improve the sensor fabrication efficiency. Experimental result of the fabricated sensor showed its high reproducibility (error lower than 5%) and the detection limit is 0.12 ng/mL which is appropriate for early diagnosis.
Keywords
Centrifugal microfluidic chip, Screen-printed electrode, Impedimetric immunosensor
Article Details
References
[1]. K. P. Valente, S. Khetani, A. R. Kolahchi, A. Nezhad, A. Suleman, M. Akbari, Microfluidic technologies for anticancer drug studies, Drug Discov. Today. 22 (2017) 1654-1670.
[2]. C. Rivet, H. Lee, A. Hirsch, S. Hamilton, H. Lu, Microfluidics for medical diagnostics and biosensors, Chem. Eng. Sci. 66 (2011) 1490–1507.
[3]. Y. J. Kim, J. E. Jones, H. Li, H. Yampara-Iguise, G. Zheng, C. A. Carson, M. Cooperstock, M. Sherman, Q. Yu, Three-dimensional (3-D) microfluidic-channel-based DNA biosensor for ultra-sensitive electrochemical detection, J. Electroanal. Chem. 702 (2013) 72–78.
[4]. Y. J. Yoon, K. H. H. Li, Y. Z. Low, J. Yoon, S. H. Ng, Microfluidics biosensor chip with integrated screen-printed electrodes for amperometric detection of nerve agent, Sensors Actuators, B Chem. 198 (2014) 233–238.
[5]. Mark, D., Haeberle, S., Roth, G., Von Stetten, F. & Zengerle, R, Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications, Chem. Soc. Rev. 39 (2010) 1153–1182.
[6]. T. T. N. Lien, Y. Takamura, E. Tamiya, M. C. Vestergaard, Modified screen printed electrode for development of a highly sensitive label-free impedimetric immunosensor to detect amyloid beta peptides, Anal. Chim. Acta. 892 (2015) 69–76.
[7]. T. T. N. Do, T. Van Phi, T. P. Nguy, P. Wagner, K. Eersels, M. C. Vestergaard, L. T. N. Truong, Anisotropic In Situ-Coated AuNPs on Screen-Printed Carbon Surface for Enhanced Prostate-Specific Antigen Impedimetric Aptasensor, J. Electron. Mater. 46 (2017) 3542–3552.
[2]. C. Rivet, H. Lee, A. Hirsch, S. Hamilton, H. Lu, Microfluidics for medical diagnostics and biosensors, Chem. Eng. Sci. 66 (2011) 1490–1507.
[3]. Y. J. Kim, J. E. Jones, H. Li, H. Yampara-Iguise, G. Zheng, C. A. Carson, M. Cooperstock, M. Sherman, Q. Yu, Three-dimensional (3-D) microfluidic-channel-based DNA biosensor for ultra-sensitive electrochemical detection, J. Electroanal. Chem. 702 (2013) 72–78.
[4]. Y. J. Yoon, K. H. H. Li, Y. Z. Low, J. Yoon, S. H. Ng, Microfluidics biosensor chip with integrated screen-printed electrodes for amperometric detection of nerve agent, Sensors Actuators, B Chem. 198 (2014) 233–238.
[5]. Mark, D., Haeberle, S., Roth, G., Von Stetten, F. & Zengerle, R, Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications, Chem. Soc. Rev. 39 (2010) 1153–1182.
[6]. T. T. N. Lien, Y. Takamura, E. Tamiya, M. C. Vestergaard, Modified screen printed electrode for development of a highly sensitive label-free impedimetric immunosensor to detect amyloid beta peptides, Anal. Chim. Acta. 892 (2015) 69–76.
[7]. T. T. N. Do, T. Van Phi, T. P. Nguy, P. Wagner, K. Eersels, M. C. Vestergaard, L. T. N. Truong, Anisotropic In Situ-Coated AuNPs on Screen-Printed Carbon Surface for Enhanced Prostate-Specific Antigen Impedimetric Aptasensor, J. Electron. Mater. 46 (2017) 3542–3552.