Investigation of Highpower Distributed Feedback diode lasers with ultra-narrow linewidth
Main Article Content
Abstract
High power diode lasers emitting at near infrared have many important applications because of their compactness, high energy-conversion efficiency and their reliability. Some high-accuracy applications such as: atomic clock, atomic absorption... require lasers with narrow linewidth at high output power. Therefore, measuring linewidth of the lasers is very necessary. In this report, techniques to characterize ultra-narrow linewidth laser are shown. Base on these technique, semiconductor 780 nm DFB laser is investigated having linewidth of 19 KHz at 250 mW output power and 25°C.
Keywords
high power diode laser, narrow linewidth laser, self-delayed heterodyne
Article Details
References
[1]. J. Camparo, The rubidium atomic clock and basic research, Phys. Today 60, 11 (2007), 33-39.
[2]. A. Klehr, H. Wenzel, O. Brox, F. Bugge, G. Erbert, T-P. Nguyen and G. Tränkle, High power DFB lasers for D1 and D2 rubidium absorption spectroscopy and atomic clocks, Proc. of SPIE, Vol. 7230, (2009), 723011-1-723011-10.
[3]. M. Maiwald, G. Erbert, A. Klehr, H-D. Kronfeldt, H. Schmidt, B. Sumpf, and G. Traenkle, Rapid shifted excitation Raman difference spectroscopy with a distributed feedback diode laser emitting at 785 nm, Appl. Phys. B, 85, (2006), 509-512.
[4]. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science, New Series, 269, No. 5221 (1995), 198-201.
[5]. O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom interferometry”, Appl. Phys. B, 97(2), (2009), 405-411.
[6]. D. Derickson, “Fiber Optics Test and Measurement”, Prentice-Hall, Inc., (1998).
[7]. G. Genty, “Supercontinuum generation in microstructured fibers and novel optical measurement techniques”, PhD Thesis, Helsinki University of Technology, Espoo (2004).
[8]. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for High Resolution Measurement of Laser Output Spectrum”, Electron Lett., 16, (1980), 630-631.
[9]. M. A. Linne, “Spectroscopic Measurement An Introduction to the Fundamentals”, Elsevier Science Ltd. (2002).
[10]. L. B. Mercer, “1/f Frequency Noise Effects on Self-Heterodyne Linewidth Measurements”, IEEE J. Lightwave Technol. 9(4), (1991), 485-492.
[11]. M. Schiemangk, S. Spießberger, A. Wicht, G. Erbert, G. Tränkle, and A. Peters, “Accurate frequency noise measurement of free-running lasers,” Appl. Opt. 53, (2014), 7138-1743.
[2]. A. Klehr, H. Wenzel, O. Brox, F. Bugge, G. Erbert, T-P. Nguyen and G. Tränkle, High power DFB lasers for D1 and D2 rubidium absorption spectroscopy and atomic clocks, Proc. of SPIE, Vol. 7230, (2009), 723011-1-723011-10.
[3]. M. Maiwald, G. Erbert, A. Klehr, H-D. Kronfeldt, H. Schmidt, B. Sumpf, and G. Traenkle, Rapid shifted excitation Raman difference spectroscopy with a distributed feedback diode laser emitting at 785 nm, Appl. Phys. B, 85, (2006), 509-512.
[4]. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science, New Series, 269, No. 5221 (1995), 198-201.
[5]. O. Carraz, F. Lienhart, R. Charrière, M. Cadoret, N. Zahzam, Y. Bidel, and A. Bresson, “Compact and robust laser system for onboard atom interferometry”, Appl. Phys. B, 97(2), (2009), 405-411.
[6]. D. Derickson, “Fiber Optics Test and Measurement”, Prentice-Hall, Inc., (1998).
[7]. G. Genty, “Supercontinuum generation in microstructured fibers and novel optical measurement techniques”, PhD Thesis, Helsinki University of Technology, Espoo (2004).
[8]. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for High Resolution Measurement of Laser Output Spectrum”, Electron Lett., 16, (1980), 630-631.
[9]. M. A. Linne, “Spectroscopic Measurement An Introduction to the Fundamentals”, Elsevier Science Ltd. (2002).
[10]. L. B. Mercer, “1/f Frequency Noise Effects on Self-Heterodyne Linewidth Measurements”, IEEE J. Lightwave Technol. 9(4), (1991), 485-492.
[11]. M. Schiemangk, S. Spießberger, A. Wicht, G. Erbert, G. Tränkle, and A. Peters, “Accurate frequency noise measurement of free-running lasers,” Appl. Opt. 53, (2014), 7138-1743.