Determining the Pressure of Tight Pants on Human Body by Numerical Simulation Method
Main Article Content
Abstract
This paper focuses on the determination of wearing pants-induced pressure on young female legs by using a numerical simulation method. A 3D biomechanical model for simulating the pressure magnitude and distribution is constructed based on the actual geometry of a female leg obtained from 3D reconstruction of computerized tomography (CT) scan images. The biomechanical solid leg model consists of three main components: skin, bones, and soft tissues. A shell model is also built for the trouser leg. The mechanical properties of bones are assumed to be a rigid material, while skin and soft tissues are considered as homogeneous linear elastic materials. Material properties of trouser fabrics are experimentally determined through tensile tests. The commercial finite element program ABAQUS is employed to simulate the pressure distributions and biomechanical responses induced by wearing pants at three typical cross-sections of legs. In addition, experiments for measurement of pressure distribution are further carried out. A careful comparison between simulation and experimental results shows a good qualitative and quantitative agreement, which suggests that the proposed biomechanical model can be used to predict, analyze, and determine pressure of tight-fit cloth on human body. The present study thus provides a reliable and efficient way for clothing design that satisfy the comfort conditions in use.
Keywords
Tight-Fit Cloth Pressure, Cloth Simulator, Numerical Simulation, Skin Pressure
Article Details
References
[1] Chen Dongsheng, Liu Hong, Zhang Qiaoling, Wang Hongge, Effects of Mechanical Properties of Fabrics on Clothing Pressure, Przeglad Elektrotechniczny (2013); ISSN 0033-2097, R. 89 NR 1b/2013, pp 232–235.
[2] Liu R, Kwok YL, Li Y, Lao TT, Zhang X, Dai XQ, Objective evaluation of skin pressure distribution of graduated elastic compression stockings, Dermatol Surgery (2005); Vol 31: pp 615–624.
[3] Rabe E, Partsch H, Junger M, et al., Guidelines for clinical studies with compression devices in patients with venous disorders of the lower limb, Eur J Vasc Endovasc Surg (2008); Vol 35: pp 494–500.
[4] Y. Cai, W. Yu and L. Chen, A finite element mechanical contact model of 3D human body and a well-fitting bra, Advances in Applied Digital Human Modeling; Published by AHFE Conference (2014): pp.157–165.
[5] X. Zhang, K.W. Yeung, and Y. Li, Numerical simulation of 3D dynamic Garment pressure, Textile Research Journal, March (2002) Vol 72: pp 245–252.
[6] K.W. Yeung, Y. Li, and X. Zhang, A 3D Biomechanical Human Model for Numerical Simulation of Garment-Body Dynamic Mechanical Interactions During Wear, The Journal of The Textile Institute, January (2004) Vol 95: pp 59–79.
[7] Rui Dan, Xue-rong Fan, Dong-sheng Chen and Qiang Wang, Numerical simulation of the relationship between pressure and displacement for the top part of men’s socks, Textile Research Journal (2011); Vol. 81, No. 2, pp 128–136.
[8] Rong Liu, Yin-Lin Kwok, Yi Li, Terence -T Lao, Xin Zhang, and Xiao Qun Dai, A Three-dimensional Biomechanical Model for Numerical Simulation of Dynamic Pressure Functional Performances of Graduated Compression Stocking (GCS), Fibers and Polymers (2006); Vol.7, No.4, pp 389–397.
[9] Tiêu chuẩn Việt Nam TCVN 5782 – 2009.
[10] Nguyễn Quốc Toàn, Đinh Văn Hải, Phan Thanh Thảo, Xây dựng mô hình 3D mô phỏng hình dạng cấu trúc chi dưới cơ thể nữ sinh Việt Nam sử dụng công nghệ chụp cắt lớp CT, Tạp chí Cơ khí Việt Nam, số 1+2 năm 2017, trang 232–239.
[11] Nguyễn Quốc Toàn, Đinh Văn Hải, Phan Thanh Thảo, Thiết kế và chế tạo thiết bị đo áp lực của trang phục lên cơ thể người sử dụng cám biến lực, Tạp chí khoa học & Công nghệ các trường Đại học kỹ thuật, số 110 năm 2016, trang 132–136.
[2] Liu R, Kwok YL, Li Y, Lao TT, Zhang X, Dai XQ, Objective evaluation of skin pressure distribution of graduated elastic compression stockings, Dermatol Surgery (2005); Vol 31: pp 615–624.
[3] Rabe E, Partsch H, Junger M, et al., Guidelines for clinical studies with compression devices in patients with venous disorders of the lower limb, Eur J Vasc Endovasc Surg (2008); Vol 35: pp 494–500.
[4] Y. Cai, W. Yu and L. Chen, A finite element mechanical contact model of 3D human body and a well-fitting bra, Advances in Applied Digital Human Modeling; Published by AHFE Conference (2014): pp.157–165.
[5] X. Zhang, K.W. Yeung, and Y. Li, Numerical simulation of 3D dynamic Garment pressure, Textile Research Journal, March (2002) Vol 72: pp 245–252.
[6] K.W. Yeung, Y. Li, and X. Zhang, A 3D Biomechanical Human Model for Numerical Simulation of Garment-Body Dynamic Mechanical Interactions During Wear, The Journal of The Textile Institute, January (2004) Vol 95: pp 59–79.
[7] Rui Dan, Xue-rong Fan, Dong-sheng Chen and Qiang Wang, Numerical simulation of the relationship between pressure and displacement for the top part of men’s socks, Textile Research Journal (2011); Vol. 81, No. 2, pp 128–136.
[8] Rong Liu, Yin-Lin Kwok, Yi Li, Terence -T Lao, Xin Zhang, and Xiao Qun Dai, A Three-dimensional Biomechanical Model for Numerical Simulation of Dynamic Pressure Functional Performances of Graduated Compression Stocking (GCS), Fibers and Polymers (2006); Vol.7, No.4, pp 389–397.
[9] Tiêu chuẩn Việt Nam TCVN 5782 – 2009.
[10] Nguyễn Quốc Toàn, Đinh Văn Hải, Phan Thanh Thảo, Xây dựng mô hình 3D mô phỏng hình dạng cấu trúc chi dưới cơ thể nữ sinh Việt Nam sử dụng công nghệ chụp cắt lớp CT, Tạp chí Cơ khí Việt Nam, số 1+2 năm 2017, trang 232–239.
[11] Nguyễn Quốc Toàn, Đinh Văn Hải, Phan Thanh Thảo, Thiết kế và chế tạo thiết bị đo áp lực của trang phục lên cơ thể người sử dụng cám biến lực, Tạp chí khoa học & Công nghệ các trường Đại học kỹ thuật, số 110 năm 2016, trang 132–136.