Growth and Characterization of Al₂O₃ Ultra-Thin Film as a Passivation Layer for Silicon Solar Cells
Main Article Content
Abstract
The properties of aluminum oxide (Al₂O₃) films have shown excellent performances such as remarkable passivation behaviors on both n- and p-type Si sufaces. For fabrication of Al₂O₃ one can use a cost-saving deposition technique called atomic layer deposition (ALD). This study explores the conditions necessary for low temperature fabrication of Al₂O₃ thin films by the ALD technique. Properties of the Al₂O₃ thin films were anlylised by variable-angle spectroscopic ellipsometer (VASE) and X-ray photoemission spectroscopy(XPS). Thicknesses of the films were investigated depending on deposition cycles. The estimated deposition growth rate was 1.0 Å/cycle at deposition temperature of about 200°C. The Al₂O₃ ultra-thin films can be used as a passivation layer for Si thin film solar cells.
Keywords
atomic layer deposition ALD, Al₂O₃ ultra-thin film, interface passivation, Si solar cells
Article Details
References
[1] J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M.C.M. van de Sanden and M.C. M. Kessels, Surface Passivation of High-efficiency Silicon Solar Cells by Atomic-layer-deposited Al2O3, Prog.Photovolt: Res. Appl. 16 (2008) 461- 466.
[2] R.W. Johnson, A. Hultqvist and S.F. Bent, A brief review of atomic layer deposition: from fundamentals to applications, Materials Today 17 (5) (2014) 1-11.
[3] R. Bock, S. Mau, J. Schmidt and R. Brendel, Back junction back-contact n-type silicon solar cells with screen-printed aluminum-alloyed emitter, Appl. Phys. Lett. 96 (2010) 263507-4.
[4] Y. Xiang, C. Zhou, E. Jia and W. Wang, Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks, Nanoscale Research Letters 10 (2015) 137-8.
[5] L.Q. Zhu, Y.H. Liu, H.L. Zhang, H. Xiao, L.Q. Guo, Atomic layer deposited Al2O3 films for anti-reflectance and surface passivation applications, Appl Surf Sci. 288 (2014) 430-334.
[6] D.K. Simon, P.M. Jordan, I. Dirnstorfer, F. Benner, C. Richter, T. Mikolajick, Symmetrical Al2O3 based passivation layers for p- and n-type silicon, Solar Energy Materials & Solar Cells 131 (2014) 72-76.
[7] E.C. Onyiriuka, Aluminum, titaniumboride, and nitride films sputter-deposited from multi component alloy targets studied by XPS, Applied Spectroscopy 47(1) (1993) 35-37.
[8] A.B. Khatibani, S. Rozati, Growth and molarity effects on properties of alumina thin films obtained by spray pyrolysis, Mat. Sci. Semicon. Proc. 18 (2014) 80-87.
[9] B.P. Dhonge, T. Mathews, S. Sundari, C. Thinaharan, M. Kamruddin, S. Dash, A. Tyagi, Spray pyrolytic deposition of transparent aluminum oxide (Al2O3) films, Appl. Surf. Sci. 258 (2011) 1091-1096.
[10] G. Gauglitz and D.S. Moore, Handbook of Spectroscopy (2014) 1523-1556.
[11] J. Haeberle, K. Henkel, H. Gargouri, F. Naumann, B. Gruska, M. Arens, M. Tallarida and D. Schmeißer, Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al2O3-films, Beilstein J. Nanotechnol. 4 (2013) 732-742.
[2] R.W. Johnson, A. Hultqvist and S.F. Bent, A brief review of atomic layer deposition: from fundamentals to applications, Materials Today 17 (5) (2014) 1-11.
[3] R. Bock, S. Mau, J. Schmidt and R. Brendel, Back junction back-contact n-type silicon solar cells with screen-printed aluminum-alloyed emitter, Appl. Phys. Lett. 96 (2010) 263507-4.
[4] Y. Xiang, C. Zhou, E. Jia and W. Wang, Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks, Nanoscale Research Letters 10 (2015) 137-8.
[5] L.Q. Zhu, Y.H. Liu, H.L. Zhang, H. Xiao, L.Q. Guo, Atomic layer deposited Al2O3 films for anti-reflectance and surface passivation applications, Appl Surf Sci. 288 (2014) 430-334.
[6] D.K. Simon, P.M. Jordan, I. Dirnstorfer, F. Benner, C. Richter, T. Mikolajick, Symmetrical Al2O3 based passivation layers for p- and n-type silicon, Solar Energy Materials & Solar Cells 131 (2014) 72-76.
[7] E.C. Onyiriuka, Aluminum, titaniumboride, and nitride films sputter-deposited from multi component alloy targets studied by XPS, Applied Spectroscopy 47(1) (1993) 35-37.
[8] A.B. Khatibani, S. Rozati, Growth and molarity effects on properties of alumina thin films obtained by spray pyrolysis, Mat. Sci. Semicon. Proc. 18 (2014) 80-87.
[9] B.P. Dhonge, T. Mathews, S. Sundari, C. Thinaharan, M. Kamruddin, S. Dash, A. Tyagi, Spray pyrolytic deposition of transparent aluminum oxide (Al2O3) films, Appl. Surf. Sci. 258 (2011) 1091-1096.
[10] G. Gauglitz and D.S. Moore, Handbook of Spectroscopy (2014) 1523-1556.
[11] J. Haeberle, K. Henkel, H. Gargouri, F. Naumann, B. Gruska, M. Arens, M. Tallarida and D. Schmeißer, Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al2O3-films, Beilstein J. Nanotechnol. 4 (2013) 732-742.