A Novel Reconfigurable Array Antenna Using Metamaterial Structure
Main Article Content
Abstract
A novel compact 4x3 elements reconfigurable antenna array using PIN-diode for C and X band applications is presented in this paper. By using metamaterial structure on the ground plane, not only antenna's bandwidth is improved, but also the size of antenna is reduced. In addition, the gain of the proposed antenna array is improved by using Metamaterial Reflective Surface (MRS). The proposed antenna array is designed, simulated and fabriacated on FR4 substrate with thickness of 1.575 mm, εr=4.4 and tanδ=0.02. The proposed antenna is designed at center frequencies of 6.75 GHz and 9.3 GHz, respectively. The simulation results are obtained in CST Microwave Studio software and are compared to measurement ones.
Keywords
reconfigurable antenna array, pin diode, frequency reconfigurable antenna, microstrip antenna
Article Details
References
[1]. D. H. Schaubert, F. G. Farrar, S. T. Hayes, and A. R. Sindoris, "Frequency-agile, polarization diverse microstrip antennas and frequency scanned arrays," Google Patents, 1983.
[2]. B. A. Cetiner, G. R. Crusats, L. Jofre, and N. Biyikli, "RF MEMS Integrated Frequency Reconfigurable Annular Slot Antenna," IEEE Trans. Antennas Propag., vol. 58, no. 3, pp. 626-632, Mar. 2010.
[3]. Pei-Yuan Qin, A. R. Weily, Y. J. Guo, T. S. Bird, and Chang-Hong Liang, "Frequency Reconfigurable Quasi-Yagi Folded Dipole Antenna," IEEE Trans. Antennas Propag., vol. 58, no. 8, pp. 2742-2747, Aug. 2010.
[4]. Μ. Ν. Μ. Kehn, O. Quevedo-Teruel, and E. Rajo-Iglesias, "Reconfigurable Loaded Planar Inverted-F Antenna Using Varactor Diodes," IEEE Antennas Wirel. Propag. Lett., vol. 10, pp. 466-468, 2011.
[5]. F. Farzami, K. Forooraghi, and M. Norooziarab, "Miniaturization of a Microstrip Antenna Using a Compact and Thin Magneto-Dielectric Substrate," IEEE Antennas Wirel. Propag. Lett., vol. 10, pp. 1540-1542, 2011.
[6]. Α. Μ. Abbosh, "Miniaturization of Planar Ultrawideband Antenna via Corrugation," IEEE Antennas Wirel. Propag. Lett., vol. 7, pp. 685-688, 2008.
[7]. B. Ghosh, S. M. Haque, D. Mitra, and S. Ghosh, "A Loop Loading Technique for the Miniaturization of Non-Planar and Planar Antennas," IEEE Trans. Antennas Propag., vol. 58, no. 6, pp. 2116-2121, Jun. 2010.
[8]. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of and ," Phys.-Uspekhi, vol. 10, no. 4, pp. 509-514, 1968.
[9]. C. Caloz and T. Itoh, "Electromagnetic Metamaterials: Transmission line Theory and Microwave Applications: The Engineering Approach," Hoboken, N.J: John Wiley & Sons, 2006.
[10]. D. Nashaat, H. Elsadek, E. Abdallah, H. Elhenawy. M. F. Iskander, and others, "Enhancement of ultra- wide bandwidth of microstrip monopole antenna by using metamaterial structures," Antennas and Propagation Society International Symposium, 2009. APSURSI 09. IEEE, 2009, pp. 1-4.
[11]. Jeong Keun Ji, Gi Ho Kim, and Won Mo Seong, "Bandwidth Enhancement of Metamaterial Antennas Based on Composite Right/Left-Handed Transmission Line," IEEE Antennas Wirel. Propag. Lett., vol. 9, pp. 36-39, 2010.
[12]. R. O. Ouedraogo, E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of Patch Antennas Using a Metamaterial-Inspired Technique," IEEE Trans. Antennas Propag., vol. 60, no. 5, pp. 2175-2182, May 2012.
[13]. M. A. Antoniades and G. V. Eleftheriades, "Multiband Compact Printed Dipole Antennas Using NRI-TL Metamaterial Loading," IEEE Trans. Antennas Propag., vol. 60, no. 12, pp. 5613-5626, Dec. 2012.
[14]. T. Alam, M. R. Faruque, M. T. Islam, and others, "Specific absorption rate reduction of multi-standard mobile antenna with double-negative metamaterial," Electron. Lett., vol. 51, no. 13, pp. 970-971, 2015.
[15]. I. B. Bonev, S. C. D. Barrio, O. Franek, and G. F. Pedersen, "A modified metamaterial inspired antenna solution for reduction of the Specific Absorption Rate in the head," International Conference on Electromagnetics in Advanced Applications (ICEAA), 2011, pp. 769-772.
[16]. C. A. Balanis, Antenna Theory: Analysis and Design, 3rd edition. Hoboken, NJ: John Wiley, 2005.
[17]. S. Islam, M. Faruque, and M. Islam, "The Design and Analysis of a Novel Split-H-Shaped Metamaterial for Multi-Band Microwave Applications," Materials, vol. 7, no. 7, pp. 4994-5011, Jul. 2014.
[18]. S. Islam, M. Faruque, and M. Islam, "The Design and Analysis of a Novel Split-H-Shaped Metamaterial for Multi-Band Microwave Applications," Materials, vol. 7, no. 7, pp. 4994-5011, Jul. 2014.
[19]. M. Nikfalazar et al., 2016, "Two-Dimensional Beam Steering Phased Array Antenna With Compact Tunable Phase Shifter Based on BST Thick-Films," IEEE Antennas and Wireless Propagation Letters, vol. 4003, no. c, pp. 1-1.
[20]. Y. Ushijima, E. Nishiyama, and M. Aikawa, 2012, "Single layer extensible microstrip array antenna integrating SPDT switch circuit for linear polarization switching," IEEE Transactions on Antennas and Propagation, vol. 60, no. 11, pp. 5447-5450.
[21]. D. Kim, M. Zhang, J. Hirokawa, and M. Ando, 2014, "Design and Fabrication of a Dual-Polarization Waveguide Slot Array Antenna With High Isolation and High Antenna Efficiency for the 60 GHz Band," Antennas and Propagation, IEEE Transactions on, vol. 62, no. 6, pp. 3019-3027.
[2]. B. A. Cetiner, G. R. Crusats, L. Jofre, and N. Biyikli, "RF MEMS Integrated Frequency Reconfigurable Annular Slot Antenna," IEEE Trans. Antennas Propag., vol. 58, no. 3, pp. 626-632, Mar. 2010.
[3]. Pei-Yuan Qin, A. R. Weily, Y. J. Guo, T. S. Bird, and Chang-Hong Liang, "Frequency Reconfigurable Quasi-Yagi Folded Dipole Antenna," IEEE Trans. Antennas Propag., vol. 58, no. 8, pp. 2742-2747, Aug. 2010.
[4]. Μ. Ν. Μ. Kehn, O. Quevedo-Teruel, and E. Rajo-Iglesias, "Reconfigurable Loaded Planar Inverted-F Antenna Using Varactor Diodes," IEEE Antennas Wirel. Propag. Lett., vol. 10, pp. 466-468, 2011.
[5]. F. Farzami, K. Forooraghi, and M. Norooziarab, "Miniaturization of a Microstrip Antenna Using a Compact and Thin Magneto-Dielectric Substrate," IEEE Antennas Wirel. Propag. Lett., vol. 10, pp. 1540-1542, 2011.
[6]. Α. Μ. Abbosh, "Miniaturization of Planar Ultrawideband Antenna via Corrugation," IEEE Antennas Wirel. Propag. Lett., vol. 7, pp. 685-688, 2008.
[7]. B. Ghosh, S. M. Haque, D. Mitra, and S. Ghosh, "A Loop Loading Technique for the Miniaturization of Non-Planar and Planar Antennas," IEEE Trans. Antennas Propag., vol. 58, no. 6, pp. 2116-2121, Jun. 2010.
[8]. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of and ," Phys.-Uspekhi, vol. 10, no. 4, pp. 509-514, 1968.
[9]. C. Caloz and T. Itoh, "Electromagnetic Metamaterials: Transmission line Theory and Microwave Applications: The Engineering Approach," Hoboken, N.J: John Wiley & Sons, 2006.
[10]. D. Nashaat, H. Elsadek, E. Abdallah, H. Elhenawy. M. F. Iskander, and others, "Enhancement of ultra- wide bandwidth of microstrip monopole antenna by using metamaterial structures," Antennas and Propagation Society International Symposium, 2009. APSURSI 09. IEEE, 2009, pp. 1-4.
[11]. Jeong Keun Ji, Gi Ho Kim, and Won Mo Seong, "Bandwidth Enhancement of Metamaterial Antennas Based on Composite Right/Left-Handed Transmission Line," IEEE Antennas Wirel. Propag. Lett., vol. 9, pp. 36-39, 2010.
[12]. R. O. Ouedraogo, E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of Patch Antennas Using a Metamaterial-Inspired Technique," IEEE Trans. Antennas Propag., vol. 60, no. 5, pp. 2175-2182, May 2012.
[13]. M. A. Antoniades and G. V. Eleftheriades, "Multiband Compact Printed Dipole Antennas Using NRI-TL Metamaterial Loading," IEEE Trans. Antennas Propag., vol. 60, no. 12, pp. 5613-5626, Dec. 2012.
[14]. T. Alam, M. R. Faruque, M. T. Islam, and others, "Specific absorption rate reduction of multi-standard mobile antenna with double-negative metamaterial," Electron. Lett., vol. 51, no. 13, pp. 970-971, 2015.
[15]. I. B. Bonev, S. C. D. Barrio, O. Franek, and G. F. Pedersen, "A modified metamaterial inspired antenna solution for reduction of the Specific Absorption Rate in the head," International Conference on Electromagnetics in Advanced Applications (ICEAA), 2011, pp. 769-772.
[16]. C. A. Balanis, Antenna Theory: Analysis and Design, 3rd edition. Hoboken, NJ: John Wiley, 2005.
[17]. S. Islam, M. Faruque, and M. Islam, "The Design and Analysis of a Novel Split-H-Shaped Metamaterial for Multi-Band Microwave Applications," Materials, vol. 7, no. 7, pp. 4994-5011, Jul. 2014.
[18]. S. Islam, M. Faruque, and M. Islam, "The Design and Analysis of a Novel Split-H-Shaped Metamaterial for Multi-Band Microwave Applications," Materials, vol. 7, no. 7, pp. 4994-5011, Jul. 2014.
[19]. M. Nikfalazar et al., 2016, "Two-Dimensional Beam Steering Phased Array Antenna With Compact Tunable Phase Shifter Based on BST Thick-Films," IEEE Antennas and Wireless Propagation Letters, vol. 4003, no. c, pp. 1-1.
[20]. Y. Ushijima, E. Nishiyama, and M. Aikawa, 2012, "Single layer extensible microstrip array antenna integrating SPDT switch circuit for linear polarization switching," IEEE Transactions on Antennas and Propagation, vol. 60, no. 11, pp. 5447-5450.
[21]. D. Kim, M. Zhang, J. Hirokawa, and M. Ando, 2014, "Design and Fabrication of a Dual-Polarization Waveguide Slot Array Antenna With High Isolation and High Antenna Efficiency for the 60 GHz Band," Antennas and Propagation, IEEE Transactions on, vol. 62, no. 6, pp. 3019-3027.