The Influence of Loop Length on Microcapsule Loading Capability of Interlock Knitted Fabric

Thi Chinh Thuy Dao1, Dieu Huong Chu1,
1 Hanoi University of Science and Technology, No.1 Dai Co Viet Str., Hai Ba Trung, Hanoi, Viet Nam

Main Article Content

Abstract

Microcapsule application is a modern method of finishing functional textiles. Microcapsule loading capability of fabric, a very important value for evaluating the efficiency of this method, depends on many factors including fabric structural parameters. In this study, the influence of loop length on microcapsule loading capability of Interlock knitted fabrics was investigated. Eudragit RSPO microcapsules containing Ibuprofen were made by solvent evaporation method. Five levels of loop length on Cotton Interlock knitted fabric were 2.81, 2.83, 2.87, 2.96, 3.05 mm and three levels of this on CVC 60/40 Interlock knitted fabric were 2.65, 2.80, 2.95 mm (both series of fabrics had yarn count of Ne40/1). Microcapsules were impregnated onto fabric by wet coating. Microcapsule loading capability of fabric was determined by the change in mass of fabric after microcapsule impregnation. The regression equation expressing the influence of loop length on microcapsule loading capability was approached by least squares method. The results showed that for both series of fabrics, microcapsule loading capability depended on loop length by a quadratic function with high coefficient of determination (0.9÷1).

Article Details

References

[1]. R. Dubey (2009) Microencapsulation Technology and Applications. Defence Science Journal, 59.1, pp. 82-95.
[2]. N. V. Jyothi, P. M. Prasanna, S. N. Sakarkar, K. S. Prabha, P. S. Ramaiah, G. Y. Srawan (2010) Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul, 27.3, pp. 187-197.
[3]. N. Carreras, V. Acuña, M. Marti, M. J. Lis (2013) Drug release system of ibuprofen in PCL-microspheres. Colloid and Polymer Science, 291.1, pp. 157-165.
[4]. F. Salaün, E. Devaux, S. Bourbigot, P. Rumeau (2010) Thermoregulating response of cotton fabric containing microencapsulated phase change materials. Thermochimica Acta, 506.1-2, pp. 82-93.
[5]. A. R. Lee, E. Yi (2013) Investigating performance of cotton and lyocell knit treated with microcapsules containing Citrus unshiu oil. Fibers and Polymers, 14.12, pp. 2088-2096.
[6]. M. Marti, R. Rodriguez, N. Carreras, M. Lis, J. Valldeperas, L. Coderch, J. L. Parra (2012) Monitoring of the microcapsule/liposome application on textile fabrics. The Journal of The Textile Institute, 103.1, pp. 19-27.
[7]. D. T. C. Thuy, C. D. Huong (2014) The influence of woven structure and yarn density on microcapsule laoding capability of fabric. Journal of Science and Technology Technical Universities, 100 pp. 51-54.
[8]. C. D. Huong, D. T. C. Thuy, N. Sintes-Zydowicz (2015) Influence of yarn type and yarn count on microcapsule loading capability of fabrics. Magazine Textile and Clothing, 5 pp. 118-122.
[9]. C. D. Huong, N. T. B. Thuy (2014) Research on the influence of structure of knitted fabrics on loading capability of microcapsule using for medical textile. Journal of Science and Technology Technical Universites, 100 pp. 60-63.
[10]. A. Nejman, M. Cieślak, B. Gajdzicki, B. Goetzendorf-Grabowska, A. Karaszewska (2014) Methods of PCM microcapsules application and the thermal properties of modified knitted fabric. Thermochimica Acta, 589 pp. 158-163.
[11]. B. Golja, B. Sumiga, B. Boh, L. Medved, T. Pusic, P. F. Tavcer (2014) Application of flame retardant microcapsules to polyester and cotton fabrics. Materials and technology, 48.1, pp. 105-111.
[12]. B. Golja, B. Šumiga, P. Forte Tavčer (2013) Fragrant finishing of cotton with microcapsules: comparison between printing and impregnation. Coloration Technology. 129.5, pp. 338-346.
[13]. L. Li, S. Liu, T. Hua, M. W. Au, K. S. Wong (2013) Characteristics of weaving parameters in microcapsule fabrics and their influence on loading capability. Textile Research Journal, 83.2, pp. 113-121.
[14]. J. J. F. Knapton, W. Fong (1971) The Dimensional Properties of Knitted Wool Fabrics. Textile Research Journal, 41.2, pp. 158-166.
[15]. D. L. Munden (1959) 26-THE GEOMETRY AND DIMENSIONAL PROPERTIES OF PLAIN-KNIT FABRICS. Journal of the Textile Institute Transactions, 50.7, pp. T448-T471.
[16]. S. Abdolmaleki, A. A. A. Jeddi, M. Amani (2012) Estimation on the 3D porosity of plain knitted fabric under uniaxial extension. Fibers and Polymers, 13.4, pp. 535-541.
[17]. G. B. Delkumburewatte, T. Dias (2009) Porosity and capillarity of weft knitted spacer structures. Fibers and Polymers, 10.2, pp. 226-230.
[18]. M. O. R. Siddiqui, D. Sun (2015) Porosity prediction of plain weft knitted fabrics. Fibers, 3 pp. 1-11.
[19]. D. Tilak, G. B. Delkumburewatte (2007) The influence of moisture content on the thermal conductivity of a knitted structure. Measurement Science and Technology, 18.5, pp. 1304.
[20]. N. P. Diễm (1978) Thiết kế nhà máy dệt kim. Trường Đại học Bách Khoa Hà Nội.