Effect of Doping Nickel Oxide and Hybrid Graphene Oxide on Electrochemistry Supercapacitor Characteristrics of Manganese Dioxide Thin Film
Main Article Content
Abstract
Nanostructured thin films of manganese dioxide and manganese dioxide doped with nickel oxide and hybridized graphene oxide are synthesized by electrochemical chronopotentiometry method. Manganese dioxide has the highest specific capacitance of 349.93 F/g; charge-discharge stability remains 73.81% after 500 CV cycles. When doped with nickel oxide and hybridized graphene oxide, porosity of the material increases, therefore, the specific capacitance of the material increases. Manganese dioxide doped with nickel oxide exhibits a specific capacitance of 384.56 F/g. The composite film manganese dioxide / graphene oxide offers the highest specific capacitance of 412.55 F/g, the large porosity and high charge-discharge stability; maintain 82.23% of its initial specific capacitance after 500 CV cycles of the charge-discharge operation.
Keywords
Manganese dioxide, doped nickel oxide, hybrid graphene oxide, chronopotentiometry
Article Details
References
Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L. C., Journal of Physical Chemistry Chemical Physics, 13, (2011) 17615-17624. Inagaki, M.; Konno, H.; Tanaike, O., Journal of Power Sources, 195, (2010) 7880-7903. Hae-Min Lee, Kangtaek Lee, Chang-Koo Kim, Materials, 7, (2014) 265-274. Ming-Tsung Lee, Jeng Kuei Chang, Wen - Ta Tsai, Chung - Kwei Lin, Journal of Power Sources, 178 (1), (2008) 478. Ming Tsung Lee, Jeng Kuei Chang, Yao-Tsung Hsieh, Wen Ta Tsai, Journal of Power Sources 185 (2), (2008) 1555. Jeng Kuei Chang, Wen Chien Hsieh, Wen Ta Tsai, Journal of Alloys and Compounds, 461 (1-2), (2008) 667-674. Mai Thanh Tung, Hoang Thi Bich Thuy, Le Thi Thu Hang, Journal of Nanoscience and Nanotechnology, Vol. 15, (2015) 1-8. Kalakodimi Rajendra Prasad, Norio miura, Electrochemistry Communications, 6 (10), (2004) 1004-1008. Trung Dung Dang, Arghya Narayan Banerjee, Sang Woo Joo, and Bong-Ki Min, Industrial and Engineering Chemistry Reasearch, (2014) 9743-9753. Rongrong Jiang, Tao Huang, Jiali Liu, Jihua Zhuang, Aishui Yu, Electrochimica Acta, 54 (11), (2009) 3047-3052. Khaled Parvez, Rongjin Li, Sreenivasa Reddy Puniredd, Yenny Hernandez, Felix Hinkel, Suhao Wang, Xinliang Feng, and Klaus Mullen, VOL. 7, NO. 4, (2013) 3598-3606. Liu, C. G.; Yu, Z. N.; Neff, D.; Zhamu, A.; Jang, B. Z., Nano Letter, 10, (2010) 4863-4868. Chin-Yi Chen, Sheng-Chang Wang, Yue-Han Tien, Wen-Ta Tsai, Chung-Kwei Lin, Thin Solid Films, 518, (2009) 1557-1560. Chung-Kwei Lin, Kai-Han Chuang, Chia-Yen Lin, Chien-Yie Tsay, Chin-Yi Chen, Surface & Coatings Technology, 202, (2007) 1272-1276. Suh Cem Pang, Marc A. Anderson, Thomas W. Chapman, Journal of The Electrochemical Society, 147 (2), (2000) 444-450. Dongfang Yang, Journal of Power Sources, Volume 228, (2012) 89-96. Jeng Kuei Chang, Ming Tsung Lee, Chiung Hui Huang, Wen Ta Tsai (2008), Materials Chemistry and Physics, 108 (1), 124-131. D.P. Dubal, W.B. Kim, C.D. Lokhande, Journal of Physics and Chemistry of Solids, 73, (2012) 18. H. Ashassi-Sorkhabi, E. Asghari, P. La'le Badakhshan, Current Applied Physics, Volume 14, Issue 2, (2014) 187-191. Hao Chen et al., ACS Appl. Mater. Interfaces, 6 (11) (2014) 8621-8630. Guihua Yu et al., Nano Lett., 11 (10) (2011) 4438-4442. S.L.Kuo, J.F. Lee, N.L. Wu, Journal of the Electrochemical Society, 154, (2007) A34.