Chemical Constituents and Anti-dengue Activity of the Metabolites from Helicia Petelotii Collected in Sapa, Vietnam

Quang Truong Le1, Thi Luu Nguyen1, Lan Huong Dang2, Phuc Huy Pham2, Quoc Binh Nguyen3, Thi Thu Thuy Nguyen4, Thi Bich Hau Vu4, Van Loc Tran1, Van Sung Tran1, Myint Myint Khine5, Irina Smirnova6, Amandio Vincent Vieira7, Thi Phuong Thao Tran1,
1 Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), Ha Noi, Vietnam
2 VNU University of Science, Ha Noi, Vietnam
3 Vietnam National Museum of Nature, VAST, Hanoi, Vietnam
4 National Institute of Hygiene and Epidemiology (NIHE), Ha Noi, Vietnam
5 Yangon University, Yangon, Myanmar
6 Institute of Chemistry, Ufa Scientific Research Center - Russian Academy of Sciences, Ufa, Russia
7 Nutrition and Metabolism Research Laboratory, Simon Fraser University, Canada

Main Article Content

Abstract

From the leaves, twigs, and fruits of Helicia petelotii collected from the Hoang Lien mountain range in Sapa, Vietnam, six compounds were isolated including β-sitosterol (1), daucosterol (2), 3-O-[β-D-(6'-nonadecanoate)glucopyranosyl]-β-sitosterol (3), β-arbutin (4), breynioside B (5), and glycerol monostearate (6). Among them, compounds 3 and 6 were isolated from the fruits, while compounds 1, 2, 4, and 5 were obtained from the leaves and twigs. Advanced spectroscopic methods such as NMR and HR-ESI-MS were applied to accomplish the structures identification of the above compounds. The anti-denge potential of compounds 1-6 were examined against two dengue virus serotypes, DENV-1 and DENV-2. Among them compounds 3 and 5 demonstrated inhibitory activity against DENV-2, with PNRT₅₀ values of 18.25 µM and 159.43 µM, respectively, while the remaining compounds were inactive against all the virus serotypes. This is the first report of phytochemicals and antiviral properties of Helicia petelotii against Dengue virus.

Article Details

References

[1] V. H. Ferreira-de-Lima and T. N Lima-Camara, Natural vertical transmission of dengue virus in Aedes aegypti and Aedes albopictus: a system review, Parasit. Vectors. vol. 11, pp. 1–8, 2018, Art. no. 77.
https://doi.org/10.1186/s13071-018-2643-9
[2] S. O. T. Bello, A. S. A. Tapsoba, A. A. Zoure, Y. J. R. Bassole, W.-L.-S. K. Yogo, P. Bado, O. F. Kouta, F. Tassembedo, T. M. Zohoncon, F. W. Djigma, A. Diabate, J. Simpore, Molecular characterization of the four serotypes (DENV-1, DENV-2, DENV-3 and DENV-4) of dengue virus circulating in Ouagadougou, Burkina Faso, Open Journal Epidemiology, vol. 14, no. 4, pp. 565–578, 2024.
https://doi.org/10.4236/ojepi.2024.144040
[3] S. Melebari, A. Hafiz, H. A. Natto, M. O. Elamin, N. A. Jalal, A. Hakim, S. Rushan, O. Fallatah, K. Alzabeedi, F. Malibari, H. Mashat, A. Alsaadi, A. Alhakam, A. Hadidi, G. S. Alkhaldi, A. Alkhyami, A. Alqarni, A. Alzahrani, M. Alghamdi, A. Siddiqi, and A. Khogeer, Estimation and characterization of dengue serotypes in patients presenting with dengue fever at Makkah hospitals, Tropical Medicine Infectious Disease, vol. 10, iss. 1, pp. 27, Jan. 2025.
https://doi.org/10.3390/tropicalmed10010027
[4] World Health Organization- WHO: Dengue and severe dengue.. [Online]. Available: https://www.who.int/health-topics/dengue-and-severe-dengue#tab=tab_1
[5] Vietnam News Agency: 2023: The whole country recorded more than 172,000 cases of dengue fever, Jan. 8, 2024. [Online]. Available: https://vnanet.vn/vi/graphic/suc-khoe-7/nam-2023-ca-nuoc-ghi-nhan-hon-172000-ca-mac-sot-xuat-huyet-7201775.html
[6] Ministry of health portal: The whole country has recorded 114,900 cases of dengue fever, with patients still hospitalized in serious condition, Nov. 23, 2024. [Online]. Available: https://moh.gov.vn/hoat-dong-cua-dia-phuong/ ghi-nhan-/asset_publisher/gHbla8vOQDuS/content/ca-nuoc-a- 114-900-ca-mac-sot-xuat-huyet-van-co-benh-nhan-vao-vien-trong-tinh-trang-nang?inheritRedirect=false
[7] Government e-newspaper: Dengue fever no longer occurs in cycles, Jun. 14, 2025. [Online]. Available: https://baochinhphu.vn/benh-sot-xuat-huyet-khong-con-xay-ra-theo-chu-ky-10225061416374119.htm
[8] R. Shukla, V. Ramasamy, R. K. Shanmugam, R. Ahuja, and N. Khanna, Antibody-dependent enhancement: a challenge for developing a safe dengue vaccine, Frontiers in Cellular Infection Microbiology, vol. 10, pp. 572681, 2010. https://doi.org/10.3389/fcimb.2020.572681
[9] J. Pintado Silva, A. Fernandez-Sesma, Challenges on the development of a dengue vaccine: a comprehensive review of the state of the art, Journal of General Virology, vol. 104, iss. 3, pp. 001831, Mar. 2023.
https://doi.org/10.1099/jgv.0.001831
[10] B. Rehman, A. Ahmed, S. Khan, N. Saleem, F. Naseer, and S. Ahma, Exploring plant-based dengue therapeutics: from laboratory to clinic, Tropical Diseases, Travel Medicine and Vaccines, vol. 10, pp. 1–19, Nov. 2024, Art. no. 23.
https://doi.org/10.1186/s40794-024-00232-1
[11] T. P. T. Tran, Q. C. Nguyen, N. A. Ho, T. L. Nguyen, T. B. H. Vu, T. T. T. Nguyen, V. C. Tran, T. A. Nguyen, T. Q. Bui B., D. C. To, T. Q. Phan, T. T. Nguyen, V. S. Tran, and T. A. N. Nguyen, Anti-dengue screening on several Vietnamese medicinal plants: experimental evidences and computational analyses, Chemistry & Biodiversity, vol. 19, iss. 7, pp. e202101026, Jul. 2022.
https://doi.org/10.1002/cbdv.202101026
[12] T. P. T. Tran, D. T. Nguyen, N. T. Pham, C. V. Tran, A. N. Ho, H. B. T. Vu, and T. T. T. Nguyen, Phytochemistry of the unpolar extract of Carica papaya leaves and its antidengue activity, Vietnam Journal of Chemistry, vol. 60, iss. 6, pp. 777–783, Dec. 2022.
https://doi.org/10.1002/vjch.202200049
[13] T. P. T. Tran, L. T. Nguyen, C. L. Nguyen, H. B. T. Vu, and T. T. T. Nguyen, The first phytochemical study of Elaeagnus latifolia in Vietnam, Vietnam Journal of Chemistry, vol. 59, iss. 3, pp. 376–382 , Jun. 2021.
https://doi.org/10.1002/vjch.202000204
[14] D. T. Nguyen, N. T. Pham, L. T. Nguyen, A. T. Nguyen, H. B. T. Vu, T. T. T. Nguyen, A. N. Ho, H. D. Pham, and T. P. T. Tran, Phytochemical study of Euphorbia cyathophora collected in Dan Phuong, Hanoi and its antidengue activity against DENV1-4 virus serotypes, Vietnam Journal of Chemistry, vol. 61, iss. 3, pp. 372–378, Jun. 2023.
https://doi.org/10.1002/vjch.202300123
[15] Pham Hoang Ho, Vietnamese plants, Youth Publishing House – Ho Chi Minh city, 1999, pp.16.
[16] H. Weston Peter and P. Barker Nigel, A new suprageneric classification of the Proteaceae, with an annotated checklist of genera, Telopea (Syd), vol. 11, iss. 3, pp. 314–344, 2006.
https://doi.org/10.7751/telopea20065733
[17] IUCN Red List of Threatened Species. [Online]. Available: https://www.iucnredlist.org
[18] P. C. Lalawmpuii, C. Malsawmtluangi, R. Vanlalruata, and B. B. Kakoti, Evaluation of anti-inflammatory activity of Helicia nilagirica Bedd on cotton pellet-induced granuloma in rats, International Journal of Pharmacy and Pharmaceutical Sciences, vol. 8, iss. 7, pp. 455–456, 2016.
[19 ] L. Tlau, L. Lalawmpuii, P. B. Lalthanpuii, V. Ralte, C. Lalnunfela, K. Lalchhandama, Study of the mizo medicinal plant, Helicia excelsa on its phytochemical components, antioxidant property and antibacterial activity, Indian Journal of Science and Technolology, vol. 16, iss. Special issue 1, pp. 10–18, 2023.
https://doi.org/10.17485/IJST/v16sp1.msc2
[20] G. C. Jagetia and J. Zoremsiami, Anticancer activity of Helicia nilagirica bedd in mice transplanted with Dalton’s lymphoma, IJCAM, vol. 11, iss. 2, pp. 209–220, Apr. 2018.
https://doi.org/10.15406/ijcam.2018.11.00380
[21] J. T. Roehrig, J. Hombach, and A. D. T. Barrett, Guidelines for plaque-reduction neutralization testing of human antibodies to dengue viruses, Viral Immunology, vol. 21, no. 2, pp. 123–132, 2008.
https://doi.org/10.1089/vim.2008.0007
[22] N. Kamal, C. Clements, A. I. Gray, R. A. Edrada-Ebel, Anti-infective activities of secondary metabolites from Vitex pinnata, Journal of Applied Pharmaceutical Science, vol. 6, iss. 1, pp. 102–106, Jan. 2016.
https://doi.org/10.7324/JAPS.2016.600117
[23] H. V. Do, H. T. Nguyen, T. T. T. Nguyen, N. T. Dang, B. H. T. Dao, A. H. T. Nguyen, H. L. T. Duong, T. H. Nguyen, Study on chemical constituentsfrom the roots of Panax bipinnatifidius seem, Collected in Sapa, Laocai, VNU Journal of Science, vol. 33, no. 2, pp. 50–55, Dec. 2017.
https://doi.org/10.25073/2588-1132/vnumps.4079
[24] N. Sultana and A. J. Afolayan, A novel daucosterol derivative and antibacterial activity of compounds from Arctotis arctotoides, Natural Product Research, vol. 21, iss. 10, pp. 889–896, Aug. 2007.
https://doi.org/10.1080/14786410601129606
[25] C. Avonto, Y. -H. Wang, B. Avula, M. Wang, D. Rua, and I. A. Khan, Comparative studies on the chemical and enzymatic stability of alpha- and beta-arbutin, International Journal of Cosmetic Science, vol. 38, iss. 2, pp. 187–193, Sep. 2015. https://doi.org/10.1111/ics.12275
[26] K. T. P. Linh, N. H. Quan, N. V. Chien, N. Q. Trung, V. H. Thong, N. V. Tuyen, and N. P. Thao, Secondary metabolites from the stem barks of rhizophora mucronata lamk, VJST, vol. 58, no. 6, pp. 653–664, 2020.
https://doi.org/10.15625/2525-2518/0/0/14783
[27] D. T. A. Nghia, H. T. N. H Hanh, L. T. Anh, L. T. H. Van, and H. V. Duc, Phenolic compounds and carotenoids from the leaves of gymnosporia chevalieri Tard, Hue Journal of Medicine and Pharmacy, vol. 15, iss. 2, pp. 170–179, May 2025.
https://doi.org/10.34071/jmp.2025.2.24
[28] N. O. V. Sonntag, Glycerolysis of fats and methyl esters – status, review and critique, Journal of the American Oil Chemists’ Society (JAOCS), vol. 59, iss. 10, pp.795–802A, Oct. 1982.
http://doi.org/10.1007/BF02634442