Effect of Electrolyte Additives for Suppressing Zinc Dendrites in Rechargeable Zinc-Ion Batteries: Preliminary Study
Main Article Content
Abstract
Aqueous zinc-ion batteries (AZIBs) offer safety, low cost, and material abundance. However, their performance is limited by dendrite formation, side reactions, and poor cycling stability. This study ppreliminarily examines the effects of various additives in aqueous electrolytes on the electrochemical behaviour of AZIBs by using contact angle, pH value, Hull cell, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear scan voltammetry (LSV) measurements. The additives under investigation include urea, thiourea, serine, tyrosine and tryptophan, which are known as low toxicity and biodegradable compounds. The obtained measurement results indicate that inclusion of the additives into the blank electrolyte of 1 M ZnSO4 at the low concentration of 5 mM only induced slight change in the pH of the electrolyte, which had no significant impact on the corrosion behaviour of a zinc metal anode in the electrolyte. In addition, the contact angle of zinc metal with the electrolytes remained at values smaller than 90°, demonstrating the hydrophilicity of the zinc anode after addition of the additives. Among the investigated organic additives, urea, thiourea and tyrosine demonstrated mitigation of zinc dendritic growth as well as inhibition of parasitic reaction (hydrogen evolution reaction). However, at high concentrations (10–100 mM) the additives promoted the dendritic growth. The further intensive investigations are recommended to deploy, thus highlighting the role of targeted additive selection in enhancing the durability and operational safety of aqueous zinc-ion batteries.
Keywords
Additives, aqueous zinc-ion batteries, anticorrosion, dendrite suppression, hydrogen evolution.
Article Details
References
https://doi.org/10.1016/B978-0-12-824337-4.00003-5
[2] S. Xu, J. Huang, G. Wang, Y. Dou, D. Yuan, L. Lin, K. Qin, K. Wu, H. K. Liu, S-X. Dou, and C. Wu, Electrolyte and additive engineering for Zn anode interfacial regulation in aqueous zinc batteries, Small Methods, vol. 8, iss. 6, Jun. 2024, Art. no. 2300268.
https://doi.org/10.1002/smtd.202300268
[3] J. Yin, Y. Luo, M. Li, M. Wu, K. Guo, and Z. Wen, Electrolyte additive l-Lysine stabilizes the zinc electrode in aqueous zinc batteries for long cycling performance, ACS Applied Materials & Interfaces, vol. 16, iss. 39, Sep. 2024, pp. 53242–53251.
https://doi.org/10.1021/acsami.4c11404
[4] Y. Zhang, X. Zheng, N. Wang, W.-H. Lai, Y. Liu, S.-L. Chou, H.-K. Liu, S.-X. Dou, and Y.-X. Wang, Anode optimization strategies for aqueous zinc-ion batteries, Chemical Science, vol. 13, no. 48, Oct. 2022, pp. 14246–14263.
https://doi.org/10.1039/D2SC04945G
[5] W. Sun, F. Wang, S. Hou, C. Yang, X. Fan, Z. Ma, T. Gao, F. Han, R. Hu, M. Zhu, and C. Wang, Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion, Journal of the American Chemical Society, vol. 139, iss. 29, Jun. 2017, pp. 9775–9778.
https://doi.org/10.1021/jacs.7b04471
[6] J. Tan, J. Liu, Electrolyte engineering toward high‐voltage aqueous energy storage devices, Energy & Environmental Materials, vol. 4, iss. 3, Jul. 2021, pp. 302–306.
https://doi.org/10.1002/eem2.12125
[7] M. H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J. P. Baboo, S. H. Choi, J. Kim, Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system, Chemistry of Materials, vol. 27, iss. 10, May 2015, pp. 3609–3620.
https://doi.org/10.1021/cm504717p
[8] H. Pan, Y. Shao, P. Yan, Y. Cheng, K. S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, K. T. Mueller, and J. Liu, Reversible aqueous zinc/manganese oxide energy storage from conversion reactions, Nature Energy, vol. 1, Apr. 2016, Art. no.16039 .
https://doi.org/10.1038/nenergy.2016.39
[9] J. Hao, B. Li, X. Li, X. Zeng, S. Zhang, F. Yang, S. Liu, D. Li, C. Wu, and Z. Guo, An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-Ion batteries, Advanced Materials, vol. 32, iss. 34, Aug. 2020, Art. no. 2003021.
https://doi.org/10.1002/adma.202003021
[10] Z. Qi, T. Xiong, Z. G. Yu, F. Meng, B. Chen, H. Xiao, J. Xue, Suppressing zinc dendrite growth in aqueous battery via Zn–Al alloying with spatially confined zinc reservoirs, Journal of Power Sources, vol. 558, Feb. 2023, Art. no. 232628.
https://doi.org/10.1016/j.jpowsour.2023.232628
[11] M. Wang, Y. Meng, X. Li, J. Qi, A. Li, and S. Huang, Challenges and strategies for zinc anodes in aqueous Zinc-Ion batteries, Chemical Engineering Journal, vol. 507, Mar. 2025, Art. no. 160615.
https://doi.org/10.1016/j.cej.2025.160615
[12] F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. A. Dura, K. Xu, C. Wang, Highly reversible zinc metal anode for aqueous batteries, Nature Materials, vol. 17, Apr. 2018, pp. 543–549.
https://doi.org/10.1038/s41563-018-0063-z
[13] X. Lv, X. Gu, R. Tian, H. Pan, X. Chen, J. Yang, D. Liu, and M. Wu, Artificial solid electrolyte interphases stabilized Zn metal anodes for high-rate and long-lifespan aqueous batteries, Electrochimica Acta, vol. 524, Jun. 2025, Art. no. 146053.
https://doi.org/10.1016/j.electacta.2025.146053
[14] J. Chen, Y. Wang, Z. Tian, J. Zhao, Y. Ma, H. N. Alshareef, Recent developments in three-dimensional Zn metal anodes for battery applications, InfoMat, vol. 6, iss. 1, Jan. 2024, e12485.
https://doi.org/10.1002/inf2.12485
[15] X. Zhu, W. Zhang, Z. Peng, L. Pan, B. Li, Z. Zhang, J. Zhu, W. Meng, L. Dai, L. Wang, and Z. He, Zinc-tin binary alloy interphase for zinc metal batteries, Chemical Engineering Journal, vol. 499, Nov. 2024, Art. no. 156521.
https://doi.org/10.1016/j.cej.2024.156521
[16] L. Deng, X. Xie, W. Song, A. Pan, G. Cao, S. Liang, and G. Fang, Realizing highly stable zinc anode via an electrolyte additive shield layer and electrochemical in-situ interface, Chemical Engineering Journal, vol. 488, May 2024, Art. no. 151104.
https://doi.org/10.1016/j.cej.2024.151104
[17] J. Cao, F. Zhao, W. Guan, X. Yang, Q. Zhao, L. Gao, X. Ren, G. Wu, A. Liu, Additives for aqueous Zinc-ion batteries: recent progress, mechanism analysis, and future perspectives, Small, vol. 20, iss. 33, Aug. 2024, Art. no. 2400221.
https://doi.org/10.1002/smll.202400221
[18] T. Liu, X. Dong, B. Tang, R. Zhao, J. Xu, H. Li, S. Gao, Y. Fang, D. Chao, and Z. Zhou, Engineering electrolyte additives for stable zinc-based aqueous batteries: insights and prospects, Journal of Energy Chemistry, vol. 98, Nov. 2024, pp. 311–326.
https://doi.org/10.1016/j.jechem.2024.06.036
[19] S. A. Haris, S. Adhami, R. Yuksel, and S. O. Kim, Bio-inspired Zinc anodes: mitigating dendrite formation and side reactions in aqueous Zinc metal batteries using laser carbonized chitosan layer, Nano and Micro Small, vol. 21, iss. 18, May 2025, Art. no. 2501293.
https://doi.org/10.1002/smll.202501293
[20] S. Lee, S.-H. Huh, Y.-H. Lee, S. H. Kim, J.-S. Bae, K. -S. Ahn, J. Huh, Y. -E. Sung, and S.-H. Yu, Exploring the effects of biomolecular additive on performance of aqueous zinc metal batteries, Chemical Engineering Journal, vol. 515, Jul. 2025, Art. no. 163465.
https://doi.org/10.1016/j.cej.2025.163465
[21] Y. Guo, R. Zhao, Z. Xu, C. Q. Lai, Enhancing Zn anode stability with bioderived electrolyte additive for aqueous Zn-ion batteries, Journal of Power Sources, vol. 643, Jul. 2025, Art. no. 237071.
https://doi.org/10.1016/j.jpowsour.2025.237071
[22] G. Jiang, L. Guo, M. Shao, N. Liu, Z. Bai, N. Wang, H. Peng, and X. Jiang, Bio-derived chitosan additive enables anion anchoring and Zn(002) deposition for high-performance Zn anodes, Chemical Communications, vol. 61, Apr. 2025, pp. 7612–7615.
https://doi.org/10.1039/D5CC01325A
[23] H. T. Bui, T.-D. Dang, H. T. Le, and T. T. Hoang, Comparative study on corrosion inhibition of Vietnam orange peel essential oil with urotropine and insight of corrosion inhibition mechanism for mild steel in hydrochloric solution, Journal of Electrochemical Science and Technology, vol. 10, iss. 1, Mar. 2019, pp. 69–81.
https://doi.org/10.5229/JECST.2019.10.1.69
[24] G. Nikiforidis, R.pp Cartwright, D. Hodgson, D. Hall, L. Berlouis, Factors affecting the performance of the Zn-Ce redox flow battery, Electrochimica Acta, vol. 140, Sep. 2014, pp. 139-144.
https://doi.org/10.1016/j.electacta.2014.04.150
[25] R. T. Vashi, K. Desai, Aniline as corrosion inhibitor for zinc in hydrochloric acid, Chemical Science Transactions, vol. 2, no. 2, 2013, pp. 670–676.
[26] Y. Zhao, C. Cao, N. Zhang, F. Liang, H. Dong, H. He, S. Li, Y. Feng, R. Li, W. Gu, B. Fei, and M. Ge, Multifunctional electrolyte additives enabled adaptable interface toward stabilizing Zn metal anodes, Chemical Engineering Journal, vol. 504, Jan. 2025, Art. no. 158737.
https://doi.org/10.1016/j.cej.2024.158737
[27] X. Yan, Y. Tong, Y. Liu, X. Li, Z. Qin, Z. Wu, and W. Hu, Highly reversible Zn anodes through a hydrophobic interface formed by electrolyte additive, Nanomaterials, vol. 13, iss. 9, 2023.
https://doi.org/10.3390/nano13091547
[28] Z. Peng, S. Li, L. Tang, J. Zheng, L. Tan, and Y. Chen, Water-shielding electric double layer and stable interphase engineering for durable aqueous zinc-ion batteries, Nature Communications, vol. 16, 2025, Art. no. 4490.
https://doi.org/10.1038/s41467-025-59830-y