Effect of Cable Configuration on Overvoltage on Cable Sheath in “Mix” Transmission Lines
Main Article Content
Abstract
This paper deals with the induced voltage along cross-bonded cable sheaths of a 220 kV mixed overhead-cable transmission line when a lightning surge propagates from the overhead line. The simulation is performed by using EMTP-ATP software to analyze the effect of surrounding environment of the cable on the sheath voltage and the surge impedance thereof. The results show that the sheath voltage can exceed the impulse withstand voltage of the cable jacket in overhead cables. The results also suggest that the sheath voltage limiters (SVL) need to be installed at the junction between minor sections of overhead cables to minimize the effects of lightning induced voltage on the sheath.
Keywords
Sheath voltage, crossbonding, "mixed" overhead-cable line, EMTP-ATP
Article Details
References
[1] A. Ametani, T. Ohno, and N. Nagaoka, Cable system transients. Singapore: John Wiley & Sons, 2015, pp.0-550.
[2] F. M. Gatta, A. Geri, and S. Lauria, Simulation of lightning response of a long mixed overhead-cable EHV line. Proc. International Conference on Grounding and Earthing (GROUND’2006), Maceio, Brazil, 2006.
[3] R. Benato and A. Paolucci, Operating capability of ac EHV mixed lines with overhead and cables links. EHV AC Undergrounding Electrical Power: Performance and Planning, vol. 78, no. 4, pp. 584-594, Apr. 2008, https://doi.org/10.1016/j.epsr.2007.05.002.
[4] F. Massaro, G. Morana, R. Musca, Transient Behavior of a “Mixed” Overhead-Cable EHV Line under Lightning Events, IEEE Proc. International Power Engineering Conference, Sep. 2009.
[5] A. Ametani and T. Kawamura, A method of a lightning surge analysis recommended in Japan using EMTP, IEEE Transactions on Power Delivery, vol. 20, no. 2, pp. 867-875, Apr. 2005, https://doi.org/10.1109/TPWRD.2004.839183.
[6] M. Ishii et al., Multistory transmission tower model for lightning surge analysis, IEEE Transactions on Power Delivery, vol. 6, no. 3, pp. 1327-1335, July 1991. https://doi.org/10.1109/61.85882.
[7] N. V. Nam, Nghiên cứu một số giải pháp giảm sự cố do sét cho đường dây truyền tải điện trên không, Luận án tiến sĩ, Bộ môn Hệ thống điện., Đại học Bách Khoa Hà Nội., Hà Nội, Việt Nam, 2020.
[8] W. S. Meyer, Electro-Magnetic Transients Program, Portland, Oregon, U.S: BPA, 1984.
[9] IEEE Guide for Bonding Shields and Sheaths of Single-Conductor Power Cables Rated 5 kV Through 500 kV, IEEE Standard 575, 2014.
[10] CIGRE Working Group 01 of SC 33. Guide to Procedures for Estimating the Lightning Performance of Transmission Lines. CIGRE Brochure, 1991.
[11] IEEE Guide for Improving the Lightning Performance of Transmission Lines, IEEE Standard 1243, 1997.
[12] A. Ametani, Wave Propagation Characteristics of Cables, IEEE Transactions on Power Apparatus and Systems, vol. PAS-99, no. 2, pp. 499-505, Mar. 1980, https://doi.org/10.1109/TPAS.1980.319685.
[2] F. M. Gatta, A. Geri, and S. Lauria, Simulation of lightning response of a long mixed overhead-cable EHV line. Proc. International Conference on Grounding and Earthing (GROUND’2006), Maceio, Brazil, 2006.
[3] R. Benato and A. Paolucci, Operating capability of ac EHV mixed lines with overhead and cables links. EHV AC Undergrounding Electrical Power: Performance and Planning, vol. 78, no. 4, pp. 584-594, Apr. 2008, https://doi.org/10.1016/j.epsr.2007.05.002.
[4] F. Massaro, G. Morana, R. Musca, Transient Behavior of a “Mixed” Overhead-Cable EHV Line under Lightning Events, IEEE Proc. International Power Engineering Conference, Sep. 2009.
[5] A. Ametani and T. Kawamura, A method of a lightning surge analysis recommended in Japan using EMTP, IEEE Transactions on Power Delivery, vol. 20, no. 2, pp. 867-875, Apr. 2005, https://doi.org/10.1109/TPWRD.2004.839183.
[6] M. Ishii et al., Multistory transmission tower model for lightning surge analysis, IEEE Transactions on Power Delivery, vol. 6, no. 3, pp. 1327-1335, July 1991. https://doi.org/10.1109/61.85882.
[7] N. V. Nam, Nghiên cứu một số giải pháp giảm sự cố do sét cho đường dây truyền tải điện trên không, Luận án tiến sĩ, Bộ môn Hệ thống điện., Đại học Bách Khoa Hà Nội., Hà Nội, Việt Nam, 2020.
[8] W. S. Meyer, Electro-Magnetic Transients Program, Portland, Oregon, U.S: BPA, 1984.
[9] IEEE Guide for Bonding Shields and Sheaths of Single-Conductor Power Cables Rated 5 kV Through 500 kV, IEEE Standard 575, 2014.
[10] CIGRE Working Group 01 of SC 33. Guide to Procedures for Estimating the Lightning Performance of Transmission Lines. CIGRE Brochure, 1991.
[11] IEEE Guide for Improving the Lightning Performance of Transmission Lines, IEEE Standard 1243, 1997.
[12] A. Ametani, Wave Propagation Characteristics of Cables, IEEE Transactions on Power Apparatus and Systems, vol. PAS-99, no. 2, pp. 499-505, Mar. 1980, https://doi.org/10.1109/TPAS.1980.319685.