Calibration Curve Building and Sensing Characteristics of Low Power Consumption H2 Gas Sensor
Main Article Content
Abstract
Detection and alarm of leakage of hydrogen (H2) gas is an extremely important issue needed to be addressed. In this study, we fabricated and calibation portable devices based on the H2 sensor using SnO2 thin film with Pd nanoscale catalytic as a sensing layer. For practical application of the sensor, we designed and realized PCB circuit boards, microprocessors, data processing, output signals, data storage, power sources and source code. This sensor based portable devices were able to monitor to as low as 25 ppm H2 gas. Power consumption and selectivity of the sensor were also investigated. This study will open another simple and low-cost approach to monitor toxic and flammable gases for environmental monitoring.
Keywords
SnO2/Pd thin film, Gas sensors, H2 intrusment
Article Details
References
[1] L. Schlapbach, Technology: Hydrogen-fuelled vehicles., Nature, vol. 460, no. 7257, pp. 809–811, Aug. 2009, http://doi.org/10.1038/460809a
[2] H. Afgan and M. G. Carvalho, Sustainability assessment of a hybrid energy system, Energy Policy, vol. 36, no. 8, pp. 2893–2900, 2008.
[3] K. Hacatoglu, I. Dincer, and M. a. Rosen, Sustainability assessment of a hybrid energy system with hydrogen-based storage, Int. J. Hydrogen Energy, vol. 40, no. 3, pp. 1559–1568, 2015, http://doi.org/10.1016/j.ijhydene.2014.11.079.
[4] Hübert, L. Boon-Brett, G. Black, and U. Banach, Hydrogen sensors – A review, Sensors Actuators B Chem., vol. 157, no. 2, pp. 329–352, Oct. 2011, http://doi.org/ 10.1016/j.snb.2011.04.070.
[5] N. Yamazoe, New approaches for improving semiconductor gas sensors, Sensors Actuators B Chem., vol. 5, no. 1–4, pp. 7–19, Aug. 1991, http://doi.org/10.1016/0925-4005(91)80213-4 .
[6] T. Seiyama, K. Fujiishi, M. Nagatani, and A. Kato, A New Detector for Gaseous Components Using Zinc Oxide Thin Films, J. Soc. Chem. Ind. Japan, vol. 66, no. 5, pp. 652–655, 1963.
[7] S. Korea, Low-power micro gas sensor, vol. 33, pp. 147–150, 1996, http://doi.org/10.1016/0925-4005(96)01822-9.
[8] A. Z. Adamyan, Z. N. Adamyan, and V. M. Aroutiounian, Study of sensitivity and response kinetics changes for SnO2 thin-film hydrogen sensors, Int. J. Hydrogen Energy, vol. 34, no. 19, pp. 8438–8443, Oct. 2009, http://doi.org/10.1016/j.ijhydene.2009.08.001.
[9] H. S. Al-Salman and M. J. Abdullah, Hydrogen gas sensing based on ZnO nanostructure prepared by RF-sputtering on quartz and PET substrates, Sensors Actuators B Chem., vol. 181, pp. 259–266, May. 2013, http://doi.org/10.1016/j.snb.2013.01.065.
[10] R. Godbole, V. Godbole, and S. Bhagwat, Palladium enriched tungsten oxide thin films: an efficient gas sensor for hazardous gases, Eur. Phys. J. B, vol. 92, no. 4, Apr. 2019, http://doi.org/10.1140/epjb/e2019-90622-0.
[11] M. Shahabuddin, A. Umar, M. Tomar, and V. Gupta, Custom designed metal anchored SnO2 sensor for H2 detection, Int. J. Hydrogen Energy, vol. 42, no. 7, pp. 4597–4609,2017, http://doi.org/10.1016/j.ijhydene.2016.12.054.
[12] F. Xie, W. Li, Q. Zhang, and S. Zhang, Highly Sensitive and Selective CO/NO/H2/NO2 Gas Sensors Using Noble Metal (Pt, Pd) Decorated MOx (M = Sn, W) Combined with SiO2 Membrane, IEEE Sens. J., vol. 19, no. 22, pp. 10674–10679, 2019, http://doi.org/10.1109/jsen.2019.2929504.
[13] N. V. Toan, N. V. Chien, N. V. Duy, H. S. Hong, H. Nguyen, N. D. Hoa, and N. V. Hieu, Fabrication of highly sensitive and selective H2 gas sensor based on SnO2 thin film sensitized with microsized Pd islands, J. Hazard. Mater., vol. 301, pp. 433–442, 2016, http://doi.org/10.1016/j.jhazmat.2015.09.013.
[14] E. German, C. Pistonesi, and V. Verdinelli, A DFT study of H2 adsorption on Pdn/SnO2 (110) surfaces (n = 1−10), Eur. Phys. J. B, vol. 92, no. 5, 2019, http://doi.org/10.1140/epjb/e2019-90659-y.
[15] N. X. Thai, N. V. Duy, N. V. Toan, C. M. Hung, N. V. Hieu, and N. D. Hoa, Effective monitoring and classification of hydrogen and ammonia gases with a bilayer Pt/SnO2 thin film sensor, Int. J. Hydrogen Energy, vol. 45, no. 3, pp. 2418–2428, 2020, http://doi.org/10.1016/j.ijhydene.2019.11.072.
[16] F. G. Sensor, Flammable Gas Sensor MQ-8, Zhengzhou Winsen Electronics Technology CO., LTD, p. 7, 2014.
[17] B. Environment, Mq-8 Gas Sensor, Hanwei Eletronics Co.,Ltd, 2014.
[18] Idt, Trace Hydrogen (H2) Sensor SGAS701 Datasheet, pp. 1–16, 2017.
[2] H. Afgan and M. G. Carvalho, Sustainability assessment of a hybrid energy system, Energy Policy, vol. 36, no. 8, pp. 2893–2900, 2008.
[3] K. Hacatoglu, I. Dincer, and M. a. Rosen, Sustainability assessment of a hybrid energy system with hydrogen-based storage, Int. J. Hydrogen Energy, vol. 40, no. 3, pp. 1559–1568, 2015, http://doi.org/10.1016/j.ijhydene.2014.11.079.
[4] Hübert, L. Boon-Brett, G. Black, and U. Banach, Hydrogen sensors – A review, Sensors Actuators B Chem., vol. 157, no. 2, pp. 329–352, Oct. 2011, http://doi.org/ 10.1016/j.snb.2011.04.070.
[5] N. Yamazoe, New approaches for improving semiconductor gas sensors, Sensors Actuators B Chem., vol. 5, no. 1–4, pp. 7–19, Aug. 1991, http://doi.org/10.1016/0925-4005(91)80213-4 .
[6] T. Seiyama, K. Fujiishi, M. Nagatani, and A. Kato, A New Detector for Gaseous Components Using Zinc Oxide Thin Films, J. Soc. Chem. Ind. Japan, vol. 66, no. 5, pp. 652–655, 1963.
[7] S. Korea, Low-power micro gas sensor, vol. 33, pp. 147–150, 1996, http://doi.org/10.1016/0925-4005(96)01822-9.
[8] A. Z. Adamyan, Z. N. Adamyan, and V. M. Aroutiounian, Study of sensitivity and response kinetics changes for SnO2 thin-film hydrogen sensors, Int. J. Hydrogen Energy, vol. 34, no. 19, pp. 8438–8443, Oct. 2009, http://doi.org/10.1016/j.ijhydene.2009.08.001.
[9] H. S. Al-Salman and M. J. Abdullah, Hydrogen gas sensing based on ZnO nanostructure prepared by RF-sputtering on quartz and PET substrates, Sensors Actuators B Chem., vol. 181, pp. 259–266, May. 2013, http://doi.org/10.1016/j.snb.2013.01.065.
[10] R. Godbole, V. Godbole, and S. Bhagwat, Palladium enriched tungsten oxide thin films: an efficient gas sensor for hazardous gases, Eur. Phys. J. B, vol. 92, no. 4, Apr. 2019, http://doi.org/10.1140/epjb/e2019-90622-0.
[11] M. Shahabuddin, A. Umar, M. Tomar, and V. Gupta, Custom designed metal anchored SnO2 sensor for H2 detection, Int. J. Hydrogen Energy, vol. 42, no. 7, pp. 4597–4609,2017, http://doi.org/10.1016/j.ijhydene.2016.12.054.
[12] F. Xie, W. Li, Q. Zhang, and S. Zhang, Highly Sensitive and Selective CO/NO/H2/NO2 Gas Sensors Using Noble Metal (Pt, Pd) Decorated MOx (M = Sn, W) Combined with SiO2 Membrane, IEEE Sens. J., vol. 19, no. 22, pp. 10674–10679, 2019, http://doi.org/10.1109/jsen.2019.2929504.
[13] N. V. Toan, N. V. Chien, N. V. Duy, H. S. Hong, H. Nguyen, N. D. Hoa, and N. V. Hieu, Fabrication of highly sensitive and selective H2 gas sensor based on SnO2 thin film sensitized with microsized Pd islands, J. Hazard. Mater., vol. 301, pp. 433–442, 2016, http://doi.org/10.1016/j.jhazmat.2015.09.013.
[14] E. German, C. Pistonesi, and V. Verdinelli, A DFT study of H2 adsorption on Pdn/SnO2 (110) surfaces (n = 1−10), Eur. Phys. J. B, vol. 92, no. 5, 2019, http://doi.org/10.1140/epjb/e2019-90659-y.
[15] N. X. Thai, N. V. Duy, N. V. Toan, C. M. Hung, N. V. Hieu, and N. D. Hoa, Effective monitoring and classification of hydrogen and ammonia gases with a bilayer Pt/SnO2 thin film sensor, Int. J. Hydrogen Energy, vol. 45, no. 3, pp. 2418–2428, 2020, http://doi.org/10.1016/j.ijhydene.2019.11.072.
[16] F. G. Sensor, Flammable Gas Sensor MQ-8, Zhengzhou Winsen Electronics Technology CO., LTD, p. 7, 2014.
[17] B. Environment, Mq-8 Gas Sensor, Hanwei Eletronics Co.,Ltd, 2014.
[18] Idt, Trace Hydrogen (H2) Sensor SGAS701 Datasheet, pp. 1–16, 2017.