Development of Image Reconstruction Algorithm in Realtime for Compton Camera Systems
Main Article Content
Abstract
Compton Camera is a imaging technique that uses the principle of Compton scattering interaction to reproduce the distribution image of the radiation source. Compton Camera is a 3-D imaging technique, which has a high sensitivity, wide viewing angle and a range of shooting energy that is much higher than the transmissive imaging technique. In addition, the Compton Camera imaging technique does not use a mechanical collimation system, so it is compact in size, suitable for mobile applications, security control, radiation source detection and medical applications. In this paper, the authors built an image reconstruction algorithm for Compton Camera imaging equipment using data from Monte Carlo simulation. The image quality and the parameters of the algorithm will be evaluated in detail to determine the practical applicability.
Keywords
Compton Camera, image reconstruction, radiography, Monte Carlo simulation
Article Details
References
[1] M. Singh, 1983, An Electronically collimated gamma
camera for single photon emission computed
tomography. Part I: Theoretical considerations and
design critetrial”, Medical Physics, vol. 10, pp. 421-
427.
[2] Y. Nakamura, K. Shimazoe, H. Takahashi, 2013,
Design and fabrication of endoscope-type Compton
Camera, Science Direct, Section A, 731, 283-287.
[3] M. Fontana, D. Dauvergne, J. M. Létang, J. L. Ley, É.
Testa, 2017, Compton Camera study for high efficiency
SPECT and benchmark with Anger system, Phys. Med.
Biol., 62(23), 8794-8812.
[4] M. L. Jan, I. T. Hsiao, H. M. Huang, 2017, Use of a
LYSO-based Compton Camera for prompt gamma
range verification in proton therapy, Med. Phys.,
44(12), 6261-6269.
http://doi/org/10.1002/mp.12626.
[5] Y. Sato, Y. Tanifuji, Y. Terasaka, H. Usami, M.
Kaburagi, K. Kawabata, W. Utsugi, H. Kikuchi, S.
Takahira, T. Torii, 2018, Radiation imaging using a
compact Compton Camera inside the Fukushima
Daiichi Nuclear Power Station building, J. Nuc. Sci.
Tech., 55, 965-970.
[6] S. Aldawood, P.G. Thirolf, A. Miani, M. Böhmer, G.
Dedes, R. Gernhäuser, C. Lang, S. Liprandi, L. Maier,
T. Marinšek, M. Mayerhofer, D.R. Schaart, I.
ValenciaLozano, K. Parodi, 2017, Development of a
Compton Camera for prompt-gamma medical imaging,
Science Direct, Rad. Phys. Chem., 140, 190-197.
[7] Glenn F. Knoll, 2010, Radiation Detection and
Measurement - 4 edition, p49-50, John Wiley & Sons,
Inc.
camera for single photon emission computed
tomography. Part I: Theoretical considerations and
design critetrial”, Medical Physics, vol. 10, pp. 421-
427.
[2] Y. Nakamura, K. Shimazoe, H. Takahashi, 2013,
Design and fabrication of endoscope-type Compton
Camera, Science Direct, Section A, 731, 283-287.
[3] M. Fontana, D. Dauvergne, J. M. Létang, J. L. Ley, É.
Testa, 2017, Compton Camera study for high efficiency
SPECT and benchmark with Anger system, Phys. Med.
Biol., 62(23), 8794-8812.
[4] M. L. Jan, I. T. Hsiao, H. M. Huang, 2017, Use of a
LYSO-based Compton Camera for prompt gamma
range verification in proton therapy, Med. Phys.,
44(12), 6261-6269.
http://doi/org/10.1002/mp.12626.
[5] Y. Sato, Y. Tanifuji, Y. Terasaka, H. Usami, M.
Kaburagi, K. Kawabata, W. Utsugi, H. Kikuchi, S.
Takahira, T. Torii, 2018, Radiation imaging using a
compact Compton Camera inside the Fukushima
Daiichi Nuclear Power Station building, J. Nuc. Sci.
Tech., 55, 965-970.
[6] S. Aldawood, P.G. Thirolf, A. Miani, M. Böhmer, G.
Dedes, R. Gernhäuser, C. Lang, S. Liprandi, L. Maier,
T. Marinšek, M. Mayerhofer, D.R. Schaart, I.
ValenciaLozano, K. Parodi, 2017, Development of a
Compton Camera for prompt-gamma medical imaging,
Science Direct, Rad. Phys. Chem., 140, 190-197.
[7] Glenn F. Knoll, 2010, Radiation Detection and
Measurement - 4 edition, p49-50, John Wiley & Sons,
Inc.