Investigating Effect of Strain and Geometric Defects on Single Polarization Vortex in PbTiO3 Nanowires
Main Article Content
Abstract
The single polarization vortex structure in nanowire can be used to store binary data in Non-Volatile Ferroelectric Random Access Memories (NVFRAM or FRAM). However, at the nanoscale, mechanical strains or geometry defects (cracks) can affect the polarization vortex and they are one of the reasons to reduce the service life as well as the reliability of the device. In this study, the atomic simulation method using the interactive potential function based on the core-shell model is selected to investigate the effects of strain, cracks and domain wall deviations (DW) on the single polarization vortex in PbTiO3 (PTO) nanowires. The results obtained showed that the polarization vortex can appear or disappear depending on the position and size of the crack. Deviations in the DW position make the polarization vortex change the size and shape. Besides, the magnitude of the vortex investigated increases under tension strain and decreases under compression strain. Especially, in large compression strain (10%), the vortex can be disappeared.
Keywords
PbTiO3, core-shell model, polarization vortex, ferroelectric nanowires
Article Details
References
[1]. J.F. Scott and C.A. Paz De Araujo, Ferroelectric memories, Science, vol. 246, no. 4936, (1989), 1400–1405.
[2]. L.E. Cross, Ferroelectric Materials for Electromechanical Transducer Applications, Jpn. J. Appl. Phys., vol. 34, no. Part 1, No. 5B, (1995), 2525–2532.
[3]. S. Zhang, F. Li, X. Jiang, J. Kim, J. Luo, and X. Geng, Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers - A review, Prog. Mater. Sci., vol. 68, (2015), 1–66.
[4]. Y. Su and J.N. Du, Existence conditions for single-vertex structure of polarization in ferroelectric nanoparticles, Appl. Phys. Lett., vol. 95, no. 1, (2009), 20–23.
[5]. Y. Su and J. N. Du, Effect of intrinsic surface stress on single-vertex structure of polarization in ferroelectric nanoparticles, Appl. Phys. Lett., vol. 96, no. 16, (2010), 192605-3.
[6]. Y. Su, H. Chen, J.J. Li, A.K. Soh, and G.J. Weng, Effects of surface tension on the size-dependent ferroelectric characteristics of free-standing BaTiO3 nano-thin films, J. Appl. Phys. 110(8), (2011), 084108-6.
[7]. Y.C. Song, Y. Ni, and J.Q. Zhang, Phase field model of polarization evolution in a finite ferroelectric body with free surfaces, in Acta Mechanica, 224 (6) (2013), 1309-1313.
[8]. J.F. Scott,
[9]. H. Fu and L. Bellaiche, Ferroelectricity in Barium Titanate Quantum Dots and Wires, Phys. Rev. Lett., vol. 91, no. 25, (2003), 257601.
[10]. Z. Wu, N. Huang, Z. Liu, J. Wu, W. Duan, and B.-L. Gu, Unusual vortex structure in ultrathin Pb(Zr0.5Ti0.5)O3 films, J. Appl. Phys., vol. 101, no. 1, (2007), 014112.
[11]. L. M. Liz-Marzán, Nanometals, Handb. Less-Common Nanostructures, no. February, (2004), 699–720.
[12]. M. Morales, R. Clay, C. Pierleoni, and D. Ceperley, First Principles Methods: A Perspective from Quantum Monte Carlo, Entropy, vol. 16, no. 1, (2013), 287–321.
[13]. H. J. Mang and H.A. Weidenmuller, Shell-Model Theory of the Nucleus, Annu. Rev. Nucl. Sci., vol. 18, no. 1, (1968), 1–26.
[14]. B. G. Dick and A.W. Overhauser, Theory of the Dielectric Constants of Alkali Halide Crystals, Phys. Rev., vol. 112, no. 1, (1958), 90–103.
[15]. W. Känzig, Ferroelectrics and antiferroelectrics. New York: Academic Press, (1957).
[16]. M.E. Lines and A. M. (Alastair M. Glass, Principles and applications of ferroelectrics and related materials. Clarendon Press, (1977).
[17]. M. Sepliarsky and R. E. Cohen, First-principles based atomistic modeling of phase stability in PMNxPT, J. Phys. Condens. Matter, vol. 23, no. 43, (2011), 435902-11.
[18]. J. D. Gale and A.L. Rohl, The General Utility Lattice Program (GULP), Mol. Simul., vol. 29, no. 5, (2003), 291–341.
[19]. T. Shimada, S. Tomoda and T. Kitamura, Ab initio study of ferroelectric closure domains in ultrathin PbTiO3 films, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 81, no. 14, (2010), 144116-6.
[20]. T.T. Quang, T.N. Giang, V.V. Thanh, and Đ.V. Trường, Khảo sát sự hình thành xoáy phân cực của vật liệu sắt điện ở kích thước thước nano mét, sử dụng mô hình core-shell, Hội nghị Cơ học Kỹ thuật toàn quốc, Viện Cơ học, Hà Nội, tập 1, (2019), 313–319.
[21]. J. Wang and M. Kamlah, Domain control in ferroelectric nanodots through surface charges, Appl. Phys. Lett., vol. 93, no. 26, (2008), 1–4.
[22]. J. Wang, Switching mechanism of polarization vortex in single-crystal ferroelectric nanodots, Appl. Phys. Lett., vol. 97, no. 19, (2010), 95–98.
[23]. D.Van Truong, T.T. Quang, N.H. Linh, N.Van Hoi, and V.Van Thanh, Strain Effect on Hysteresis Loop of PbTiO3 Bulk, Proceedings of the International Conference on Engineering Research and Applications, ICERA 2019, Trường ĐH Kỹ thuật Công nghiệp Thái Nguyên, vol. 104,(2020), 679–685.
[24]. S. Prosandeev, I. Ponomareva, I. Kornev, I. Naumov, and L. Bellaiche, Controlling toroidal moment by means of an inhomogeneous static field: An Ab initio study, Phys. Rev. Lett., vol. 96, no. 23, (2006), 1–4.
[2]. L.E. Cross, Ferroelectric Materials for Electromechanical Transducer Applications, Jpn. J. Appl. Phys., vol. 34, no. Part 1, No. 5B, (1995), 2525–2532.
[3]. S. Zhang, F. Li, X. Jiang, J. Kim, J. Luo, and X. Geng, Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers - A review, Prog. Mater. Sci., vol. 68, (2015), 1–66.
[4]. Y. Su and J.N. Du, Existence conditions for single-vertex structure of polarization in ferroelectric nanoparticles, Appl. Phys. Lett., vol. 95, no. 1, (2009), 20–23.
[5]. Y. Su and J. N. Du, Effect of intrinsic surface stress on single-vertex structure of polarization in ferroelectric nanoparticles, Appl. Phys. Lett., vol. 96, no. 16, (2010), 192605-3.
[6]. Y. Su, H. Chen, J.J. Li, A.K. Soh, and G.J. Weng, Effects of surface tension on the size-dependent ferroelectric characteristics of free-standing BaTiO3 nano-thin films, J. Appl. Phys. 110(8), (2011), 084108-6.
[7]. Y.C. Song, Y. Ni, and J.Q. Zhang, Phase field model of polarization evolution in a finite ferroelectric body with free surfaces, in Acta Mechanica, 224 (6) (2013), 1309-1313.
[8]. J.F. Scott,
[9]. H. Fu and L. Bellaiche, Ferroelectricity in Barium Titanate Quantum Dots and Wires, Phys. Rev. Lett., vol. 91, no. 25, (2003), 257601.
[10]. Z. Wu, N. Huang, Z. Liu, J. Wu, W. Duan, and B.-L. Gu, Unusual vortex structure in ultrathin Pb(Zr0.5Ti0.5)O3 films, J. Appl. Phys., vol. 101, no. 1, (2007), 014112.
[11]. L. M. Liz-Marzán, Nanometals, Handb. Less-Common Nanostructures, no. February, (2004), 699–720.
[12]. M. Morales, R. Clay, C. Pierleoni, and D. Ceperley, First Principles Methods: A Perspective from Quantum Monte Carlo, Entropy, vol. 16, no. 1, (2013), 287–321.
[13]. H. J. Mang and H.A. Weidenmuller, Shell-Model Theory of the Nucleus, Annu. Rev. Nucl. Sci., vol. 18, no. 1, (1968), 1–26.
[14]. B. G. Dick and A.W. Overhauser, Theory of the Dielectric Constants of Alkali Halide Crystals, Phys. Rev., vol. 112, no. 1, (1958), 90–103.
[15]. W. Känzig, Ferroelectrics and antiferroelectrics. New York: Academic Press, (1957).
[16]. M.E. Lines and A. M. (Alastair M. Glass, Principles and applications of ferroelectrics and related materials. Clarendon Press, (1977).
[17]. M. Sepliarsky and R. E. Cohen, First-principles based atomistic modeling of phase stability in PMNxPT, J. Phys. Condens. Matter, vol. 23, no. 43, (2011), 435902-11.
[18]. J. D. Gale and A.L. Rohl, The General Utility Lattice Program (GULP), Mol. Simul., vol. 29, no. 5, (2003), 291–341.
[19]. T. Shimada, S. Tomoda and T. Kitamura, Ab initio study of ferroelectric closure domains in ultrathin PbTiO3 films, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 81, no. 14, (2010), 144116-6.
[20]. T.T. Quang, T.N. Giang, V.V. Thanh, and Đ.V. Trường, Khảo sát sự hình thành xoáy phân cực của vật liệu sắt điện ở kích thước thước nano mét, sử dụng mô hình core-shell, Hội nghị Cơ học Kỹ thuật toàn quốc, Viện Cơ học, Hà Nội, tập 1, (2019), 313–319.
[21]. J. Wang and M. Kamlah, Domain control in ferroelectric nanodots through surface charges, Appl. Phys. Lett., vol. 93, no. 26, (2008), 1–4.
[22]. J. Wang, Switching mechanism of polarization vortex in single-crystal ferroelectric nanodots, Appl. Phys. Lett., vol. 97, no. 19, (2010), 95–98.
[23]. D.Van Truong, T.T. Quang, N.H. Linh, N.Van Hoi, and V.Van Thanh, Strain Effect on Hysteresis Loop of PbTiO3 Bulk, Proceedings of the International Conference on Engineering Research and Applications, ICERA 2019, Trường ĐH Kỹ thuật Công nghiệp Thái Nguyên, vol. 104,(2020), 679–685.
[24]. S. Prosandeev, I. Ponomareva, I. Kornev, I. Naumov, and L. Bellaiche, Controlling toroidal moment by means of an inhomogeneous static field: An Ab initio study, Phys. Rev. Lett., vol. 96, no. 23, (2006), 1–4.