Design of an Ejector Working in Combined Ejector – Vapor Compressor Refrigeration Cycle
Main Article Content
Abstract
In this paper, a calculation program is developed to design ejector working in a combined ejector – vapor compression refrigeration cycle. R134a is selected as the refrigerant for the ejector sub-cycle, and R410A is selected for the compressor sub-cycle. The effect of operating conditions and cooling capacity are examined. The results show that the area ratio increases with the increasing of generator temperature and intercooler temperature; and decreases with the increasing of condenser temperature and evaporator temperature. When the generator temperature, condenser temperature, intercooler temperature and evaporator temperature are 80°C, 34°C, 15°C, 0°C respectively, the area ratio is 8.55 and independent with cooling capacity. The design equations of significant dimensions based on operating conditions and cooling capacity are also introduced. The results show that R134a ejector which is designed for simple ejector cycle is not suitable for combined cycle.
Keywords
Ejector, Combine cycle, Area ratio
Article Details
References
[1] T. K. Nguyen and C. H. Le, Thermodynamic analysis of an ejector-vapour compressor cascade refrigeration system, Journal of Thermal Analysis and Calorimetry, vol. 141, pp. 2189-2200, 2020. https://doi.org/10.1007/s10973-020-09635-6
[2] G. K. Alexis and E. K. Karayiannis, A solar ejector cooling system using refrigerant R134a in the Athens area, Renewable Energy, vol. 30, pp. 1457-1469, 2005. https://doi.org/10.1016/j.renene.2004.11.004
[3] R. Ben Mansour, M. Ouzzane, and Z. Aidoun, Numerical evaluation of ejector-assisted mechanical compression systems for refrigeration applications, International journal of refrigeration, vol. 43, pp. 36-49, 2014. https://doi.org/10.1016/j.ijrefrig.2014.04.010
[4] W. Pridasawas and P. Lundqvist, An exergy analysis of a solar-driven ejector refrigeration system, Solar energy, vol. 76, pp. 369-379, 2004. https://doi.org/10.1016/j.solener.2003.11.004
[5] B. J. Huang, J. M. Chang, C. P. Wang, and V. A. Petrenko, A 1-D analysis of ejector performance, International journal of refrigeration, vol. 22, pp. 354-364, 1999. https://doi.org/10.1016/S0140-7007(99)00004-3
[6] ESDU, Jet pumps, Data item 86030, ESDU International Ltd, 1986.
[7] M. Ouzzane and Z. Aidoun, Model development and numerical procedure for detailed ejector analysis and design, Applied Thermal Engineering, vol. 23, pp. 2337-2351, 2003. https://doi.org/10.1016/S1359-4311(03)00208-4
[8] A. Khalil, M. Fatouh, and E. Elgendy, Ejector design and theoretical study of R134a ejector refrigeration cycle, International Journal of refrigeration, vol. 34, pp. 1684-1698, 2011. https://doi.org/10.1016/j.ijrefrig.2011.01.005
[9] W. Chen, C. Shi, S. Zhang, H. Chen, D. Chong, and J. Yan, Theoretical analysis of ejector refrigeration system performance under overall modes, Applied Energy, vol. 185, pp. 2074-2084, 2017. https://doi.org/10.1016/j.apenergy.2016.01.103
[10] J. Chen, H. Havtun, and B. Palm, Investigation of ejectors in refrigeration system: Optimum performance evaluation and ejector area ratios perspectives, Applied Thermal Engineering, vol. 64, pp. 182-191, 2014. https://doi.org/10.1016/j.applthermaleng.2013.12.034
[2] G. K. Alexis and E. K. Karayiannis, A solar ejector cooling system using refrigerant R134a in the Athens area, Renewable Energy, vol. 30, pp. 1457-1469, 2005. https://doi.org/10.1016/j.renene.2004.11.004
[3] R. Ben Mansour, M. Ouzzane, and Z. Aidoun, Numerical evaluation of ejector-assisted mechanical compression systems for refrigeration applications, International journal of refrigeration, vol. 43, pp. 36-49, 2014. https://doi.org/10.1016/j.ijrefrig.2014.04.010
[4] W. Pridasawas and P. Lundqvist, An exergy analysis of a solar-driven ejector refrigeration system, Solar energy, vol. 76, pp. 369-379, 2004. https://doi.org/10.1016/j.solener.2003.11.004
[5] B. J. Huang, J. M. Chang, C. P. Wang, and V. A. Petrenko, A 1-D analysis of ejector performance, International journal of refrigeration, vol. 22, pp. 354-364, 1999. https://doi.org/10.1016/S0140-7007(99)00004-3
[6] ESDU, Jet pumps, Data item 86030, ESDU International Ltd, 1986.
[7] M. Ouzzane and Z. Aidoun, Model development and numerical procedure for detailed ejector analysis and design, Applied Thermal Engineering, vol. 23, pp. 2337-2351, 2003. https://doi.org/10.1016/S1359-4311(03)00208-4
[8] A. Khalil, M. Fatouh, and E. Elgendy, Ejector design and theoretical study of R134a ejector refrigeration cycle, International Journal of refrigeration, vol. 34, pp. 1684-1698, 2011. https://doi.org/10.1016/j.ijrefrig.2011.01.005
[9] W. Chen, C. Shi, S. Zhang, H. Chen, D. Chong, and J. Yan, Theoretical analysis of ejector refrigeration system performance under overall modes, Applied Energy, vol. 185, pp. 2074-2084, 2017. https://doi.org/10.1016/j.apenergy.2016.01.103
[10] J. Chen, H. Havtun, and B. Palm, Investigation of ejectors in refrigeration system: Optimum performance evaluation and ejector area ratios perspectives, Applied Thermal Engineering, vol. 64, pp. 182-191, 2014. https://doi.org/10.1016/j.applthermaleng.2013.12.034